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PREFACE

The 1993 U.S. Army Edgewood Research, Development and
Engineering Center (Edgewood RDEC) Scientific Conference on Obscuration and
Aerosol Research was held 22 - 24 June 1993 at the Edgewood Area
Conference Center of Aberdeen Proving Ground, MD. The Conference is held
annually, the last full week in June, under the direction of Dr. Edward Stuebing,
Team Leader, Aerosol Sciences and Technology. This report was authorized
under project number 1 01 61102A71 A, Research in CW/CB Defense.

The Conference is an informal forum for scientific exchange and
stimulation among investigators in the wide variety of disciplines required for
aerosol research, including a description of an obscuring aerosol and its effects.
The participants develop some familiarity with the U.S. Army aerosol and
obscuration science research programs and also become personally acquainted
with the other investigators and their research interests and capabilities. Each
attpndee is invited to present any aspect of a topic of interest and may make
last minute changes or alterations in his presentation as the flow of ideas in the
Conference develops.

While all participants in the Conference are invited to submit papers for
the proceedings of the Conference, each investigator, who is funded by the U.S.
Army Research Program, is requested to provide one or more written papers
that document specifically the progress made in his funded effort in the previous
year and indicating future directions. Also, the papers for the proceedings are
collected in the Fall to allow time for the fresh ideas that arise at the Conference
to be incorporated. Therefore, while the papers in these proceedings tend to
closely correspond to what was presented at the Conference, there is not an
exact correspondence.

The reader will find the items relating to the Conference itself,
photographs, the list of attendees, and the agenda in the appendixes following
the papers and in the indexes pertaining to them.

The use of trade names or manufacturers' names in this report does not
constitute an official endorsement of any commercial products. This report may
not be cited for purposes of advertisement.

Reproduction of this document in whole or in part is prohibited except
with permission of the Director, U.S. A;- "'ewood Research, Development
and Engineering Center, ATTN: SCBRD-h, :.lding E-5951, Aberdeen -for
Proving Ground, MD 21010-5423. Howevei, .. ,e Defense Technical
Information Center and the National Technical Information Service are NTIS CRA&I

authorized to reproduce this document for U.S. Government purposes. [1- AL-. L
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A. PARTICLE FORMATION AND TRANSPORT

CARBON AEROSOL GENERATION IN ELECTRIC DISCHARGE
J. Kretzschmar and J. R. Brock

Department of Chemical Engineering
University of Texas/Austin 78712-1062
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"A theoretical investigation of low pressure particle impaction in a highly underexpanded sonic

impinging slit jet", J. Aerosol Sci. 24, 31-44, (1993) (with P. S. Chang and I. Trachtenberg)
""Formation of nanoparticles by laser ablation of aerosol particles",Appl. Phys.Lett.

.submitted(1993) (with C-B Juang, H. Kai,. M. F. Becker, J. Keto)
"Particle formation by homogeneous nucleation in rapidly expanding flows" Proceedings of the

1990 CRDEC Scientific Conference on Obscuration and Aerosol Research, CRDEC, U. S.

Army, 1991 (with B. J. Jurcik).

"Particle formation by binary homogeneous nucleation in supersonic flows" Proceedings of the
1991 CRDEC Scientific Conference on Obscuration and Aerosol Research, CRDEC, U. S.

Army, 1992 (with B. J. Jurcik).

"Formation of graphite and diamond fibers in corona discharges" Proceedings of the 1991

CRDEC Scientific Conference on Obscuration and Aerosol Research, CRDEC, U. S. Army,

1992.

"Laser-assisted liquid film etching",Appl. Phys. Lett..62 3345(1993).(with P. Lim and I.

Trachtenberg)

"Finite element solution of the Maxwell equations for absorption and scattering of

electromagnetic radiation by a coated dielectric particle", Appl. Opt. (1993). (with Choi and
Liebman).

"Numerical simulation of particle formation and growth in rapidly expanding axisymmetric

flows", J. Phys. Chem. 97,323-331 (1993) (with B. J. Jurcik)

"Feasibility of finite element solution of the Maxwell equations for absorption and scattcring of
electromagnetic radiation by a dielectric particle", J. Comput. Physics, submitted, 1993 (with

Choi and Liebman).

"A new hybrid method to solve the Maxwell equations for absorption and scattering of
electromagnetic radiation by dielectric particles", submitted for publication,1993. (with Choi).

"Finite element solution of the Maxwell equations for absorption and scattering of

electromagnetic radiation by dielectric particles", SPIE Meeting, Los Angeles, CA, April 1993.

ABSTRACT
A study is underway to determine optimum conditions for generating carbon aerosol in corona
discharge in JP-8 vapor as a possible improved replacement technology for the VEESS.
Preliminary experiments and results are presented. A theoretical analysis of corona discharge
dynamics is given along with directions for future research.
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INTRODUCTION
Vehicle Engine Exhaust Smoke Systems (VEESS) were incorporated onto a

majority of U. S. Army combat vehicles (M 1, M2/M3, M60, M551, and M48) by development
efforts of the U. S. Army Chemical Research, Development and Engineering Center (CRDEC)
and with the respective combat vehicle's production contractors during the late 1970s to early
1980st The purpose of the VEESS is to provide combat vehicles with an onboard screening
smoke system supplementing the rapid short duration smoke provided by launched screening
smoke grenades. The VEESS uses the vehicle exhaust system to vaporize fuel to produce
smoke.

The Vehicle Engine Exhaust Smoke System (VEESS) operated with diesel fuel
DF-2 or materials with similar or lower vapor pressures was found in the TRAC VEESS Study
to be an essential element in increasing effectiveness and protection of armored vehicles on the
battlefield TRAC found that VEESS gave significant statistical increases in force effectiveness,
in MIA1 system effectiveness and gave significant statistical decreases in force vulnerability and
in BMP and DVO equipped FST effectiveness.

Recently, the "Fuel Standardization on the Battlefield" policy was adopted that
replaces diesel fuel (DF-2) with aviation turbine fuel (JP- 8), with initial fielding of JP-8 to begin
in Europe during 1987. Stocks of DF-2 will be exhausted prior to 1990. A field trial was
carried out at Dugway Proving Ground during September 1986, where fog oil, DF-2 and JP-8
smoke yields were compared. The study was carried out under stable atmospheric conditions
with ambient temperatures in the range 41 to 70 OF. This study showed that, while Fog Oil and
DF-2 produced an acceptable smoke, the M1 VEESS produced an ineffective smoke when JP-8
was used. JP-8 fuel is a petroleum cut somewhat lighter than kerosene and heavier than gasoline.
The mean molecular weight of JP-8 is around 160, considerably less than that for diesel fuel
(-200) and for Fog Oil (-300). For this reason, JP-8 has a vapor pressure at STP around five
times greater than that of diesel DF-2, thereby accountir g for the ineffectiveness of JP-8 smoke.
Therefore, the planned introduction of JP-8 as the single battlefield fuel will make the current
VEESS ineffective.

For these reasons this research was initiated to identify optimum conditions for
generating carbon aerosol in corona discharge from JP-8 vapor as a possible improved
replacement technology for the VEESS system. This research is composed of two major parts.
The first part consists of demonstration of carbon aerosol generation from JP-8 in corona
discharge, and the other is modeling carbon aerosol generation in the DC corona discharge with
the view of optimizing aerosol production from JP-8. In experimental investigation of carbon
aerosol generation, optical emission spectroscopy is used to identify the species responsible for
carbon formation, whose concentrations can be found by actinometry. Raman spectroscopy can
also used to identify the type of carbon aerosol formed in the discharge. The aerosol
characteristics can be examined by Scanning Electron Microscopy (SEM) and Transmission
Electron Microscopy (TEM).

Modeling of the DC corona discharge process will be done numerically to calculate the active
species concentrations (which include ions, electrons, and neutrals), potential distribution, the
electrical field distribution, and total conduction currents. From these modeled concentrations,
particular solutions will be compared with actual experimental results obtained from optical
emission spectroscopy.

H. THEORETICAL BACKGROUND
1. Corona Discharge

A corona is a weakly luminous gaseous discharge that appears in the neighborhocd of
electrified points or thin wires, where the field is greatly enhanced. Ionization of the gas takes
place only locally where the gas emits light. The electric current is closed by a flux of charges of

IR. J. Lepito and G. Rubel, JP-8 Impact on the Vehicle Engine Exhaust Smoke System (VEESS),

SMCCRMUS (70-1r) 30 September 1988.
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a specific sign (depending on the polarity of the point) that are produced in the self-sustaining
discharge zone at the point and are transported by a relatively weak field to the other electrode.
Little if any radiation is emitted from the outer region.

A corona discharge occurs only if the field is sharply nonuniform. The field near one or both
electrodes must be larger than in the rest of the gap. This situation typically arises when the
characteristic size r of the electrodes is much smaller than the interelectrode distance d, i.e.--,
r<<d. Thus, a corona discharge system consists of high-field active electrodes or surfaces
surrounded by ionization regions where free charges are produced; low-field drift regions where
charged particles drift and react; and low-field passive electrodes mainly acting as charge
collectors.

To initiate a corona, a certain rather high voltage is required, that depends on the specific
conditions. The corona discharge belongs to the group of self-sustained discharges; the
conditions under which it appears reflect the physical mechanism of reproduction of elements in
that region of the enhanced field where ionization occurs. The mechanism of multiplication of
electrons is essentially dependent on the polarity of the electrode surrounded by the corona. If
this electrode is the cathode (the corona is then said to be negative), then avalanche multiplication
takes place. The secondary process is the e-emission from the cathode. In principle, the ignition
of a negative corona does not differ from the so-called Townsend discharge. The variety of
behavior in discharges is summarized in Table 1, below.

Table 1. Classification of dc gas discharges

Discharge Field and potential Feedback mechanism

type distribution and cathode fall volt.

Townsend Essentially Feedback to cathode

Laplacian by photons, positive

Glow Space charge ions, and metastables,

(Corona) dominated, with needing a high cathode

a concentrated fall voltage Vc >> Vi

cathode fall and

Arc, a non-LTE or LTE* Feedback to cathode
positive column

Spark via thermal or field

electron emission

LTE: Local thermodynamic equilibrium
1. Experimental Work.

The experimental arrangement proposed for study of growth of carbon fibers in
the corona discharge is shown in Fig. 1. This system is designed to provide information on
those charged species responsible for growth of fibrous carbon. Additional experiments have
been done and the arrangement is indicated by the schematic diagram of Fig. 2. This was used
to collect bulk samples of carbon aerosol formed in corona discharge Samples of several grams
of aerosol were collected and sent to RDEC for testing as an ir-vis obscurant, as was done by
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Dr. J. Embury. The samples were produced by passing a mixture of diesel fuel vapor in
nitrogen through the domain of a negative corona discharge. The arrangement shown depended
on impaction for collection of the produced carbon aerosol; the efficiency of impaction was very
low, so that much larger amounts of aerosol were produced than collected (collection rate was
-0.18 gm/min., production rate was-10 times this). The corona was operated at a total power of
-14-23 watts. with a hydrocarbon flow rate of - 50 cc/min. this corresponds to a hydrocarbon
molal flow rate of -0.0022 g-moles/min., or of diesel vapor -0.446gm/min which, taking into
account the low impaction efficiency, indicates a conversion efficiency of vapor to carbon
aerosol considerably greater than - 40%.

2. Mechanism of the corona discharge
2.1 Townsend coefficient (primary ionization coefficient)

When electrons are liberated from a cathode in a point to plane gap, they gain their
equilibrium energy distribution in the field in the gas rapidly, after traveling some small distance
xo. As they proceed toward the anode along the x-direction, defined here as the direction of the
applied field E at a pressure p, they will produce ionization. After ionization by an electron, two
new electrons are created that start with nearly zero energy and quickly gain enough energy to
ionize anew. There are thus four new electrons after the second ionizing event; these. again ionize
and create eight. Thus the one initial electron, starting from the cathode, on advancing xo cm in
the field direction, will have created n=exp(Qxxo) electrons. On arrival at the anode (at x=d),
there will be n=exp(oad) new electrons. Since these move with a high drift velocity, they will
reach th.; anode, leaving their positive ion companions virtually at the place where they were
created. The positive ions then gradually drift toward the cathode. The quantity aX, called the first
Townsend coefficient, or coefficient for ionization by electron impact, represents the number of
new electrons created per centimeter path in the field direction. One electron and its progeny of
exp(aXd) electrons on arrival at the anode constitute what is termed an "electron avalanche".

2.2 Secondary Electron Emission
When an energetic species strikes a surface, one of the possible results is that an electron will

be ejected. The number of electrons ejected per incident species is called the secondary electron
coefficient. Secondary electron emission is observed for impact by ions, electrons, photons and
neutrals (both ground state and metastable); each will have a different coefficient and a different
energy dependence. Secondary electron emission from a cold cathode produces breakdown of
discharge gaps aiid also sustains small dc currents that are incapable of substantial heating of the
cathode or of creating such a strong field at the cathode that thermionic field emission develops.

The most important among the various secondary mechanisms is the ion-electron emission. It
is characterized by a coefficientYi , the number of electrons emitted per incident positive ion. The
relatively small kinetic energies that ions acquire in discharges are ineffective for knocking out
electrons, and the main mechanism for secondary electron emission on impact is that the field of
an ion approaching a surface to within a distance of atomic dimensions transforms a potential
well on the surface into a potential barrier. If this barrier is low and narrow because the field is
very strong, on the order of that around nuclei, an electron from the metal immediately tunnels
into the ion and neutralizes it. If the energy released is greater than the work function of the
cathode, eC!, it may be spent on ejecting another electron.

These secondary electron emission processes are important in discharges, because each of
them can contribute electrons to the discharge and help to offset the electron loss processes.
3. Modeling the DC Corona Discharge

An accurate description of the DC corona discharge--i.e., the ion and electron densities and
currents, is essential in simulation of the corona discharge processes. In this research, we focus
on fluid or continuum models of ion and electron kinetics and transport. The continuum model
consist of equations of conservation and Poisson's equation. When modeling unmagnetized
plasmas, equations of conservation are combined with Poisson's equation to describe the self-
consistent, local electric field. The basic assumption made in deriving this model is that charged

14



particle transport is at LTE, as indexed by Efp--that is, the collisional mean free path is small
compared to the distances over which voltage and gas density change significantly. A continuum
model provides estimates for average quantities such as densities and fluxes. The continuum
model is summarized below.

The magnitude and shape of the local electric field depends on both the applied field and the
space charge distribution according to Poisson's equation.

V2V =VE= q (nf -np)

where np and ne are positive ion and electron densities, respectively, V is the electrostatic
potentiaf, whose gradient, E, is the electric field. Ion densities are given, in turn, by equations of
continuity:

an- + V.Fp = F
a t
ane + V.F, = F

a t
where F is the flux, and F is the source strength%.

F=a r4
where CX. the first Townsend coefficient (Fig. 2), is expressed as:

\(E/p)' J.
Both A and B are constants that depend on the type of gas and the pressure; r depends on the
nature of the gas. Note that this form for the ionization function means that the ionization rate
will be largest where both the electric field and the electron flux are large. Since the dependence
on the field is exponential, this means that the ionization rate will be maximum in the sheath.

ILl. EXPERIMENTS
1. Experimental Procedures

A schematic diagram of the experimental apparatus to be used for the study of
carbon fiber growth in a DC corona discharge is shown in Fig. 3. The reactor is made of
polycarbonate in order to contain the electric field within the chamber. The system is comprised
of a point to plane arrangement where the electrode spacing is set by the operator. The cathode
wire if made of nickel, and the powered electrode is made of chromium and an aluminum plate
is the grounded electrode. These electrodes will be powered by a Spellman PHSR regulated
high voltage DC power generator, providing between 3000 - 5000 volts at 0-5mA. Evacuation
of the chamber will be accomplished by an Edwards 40 two stage pump, creating an effective
pressure of 760 to 1 torr, The pressure is varied in order to study its effect on the discharge
chemistry. The feed gas will be a variable mixture of JP-8 vapor and nitrogen, All flow rate
measurements will be made with rotameters.

A schematic diagram of the basic setup for optical emission spectroscopy (OES)
and Raman spectroscopy is shown in Fig. 4. Both the OES and Raman spectra of the corona
discharge will be obtained with a Tracor Northern TN-6500 optical multichannel spectrum
analyzer connected to a Tracor model 6121 512 element intensified diode array detector. The
optical system is coupled to the emissions through a fiber optic cable or a Gaertner micrometer
microscope attached to a sapphire viewport. The fiber optic cable is connected to a 0.22m SPEX
1681 spectograph that includes the diode detector. The monochromator contains a diffractive



grating of 1200 grooves/mm which will allow approximately 0.12 nm/diode resolution. The
Raman portion of the analysis to be done on the generated carbon incorporates in addition a
Spectra-Physics 164 argon ion laser and a Raman notch filter (omega optical) which will be
placed between the reactor and the monochromator to eliminate the laser line.
IV. Preliminary results

A one dimensional continuum model for the DC discharge has been derived and solved.
This continuum model consists of the equations of continuity for both ions and electrons and
Poisson's equation. The DC simulation results are presented in Figs. 3-8. Fig. 3 is a plot of
particle densities, showing the region of quasi-neutrality in the bulk. The peak ion density is
around 1.8 x 109 cm"3. The electric potential and electric field distributions are shown in Figs. 4
and 5. The electric field varies linearly through the ionization region and then becomes nearly
zero in the drift region. The total current density is plotted in Fig. 6. The total current density is a
constant across the domain of a DC discharge. The total current indicated is around 0.184
mA/cm 2 . Ionization rate is shown in Fig.7. After the ionization region, the ions and electrons
drift to the anode. The effect of pressure on the calculated ion density is shown in Fig. 8,
indicating higher values of ion density and decreases in the size of the ionization region, as
pressure increases.
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SCHEMATIC DIAGRAM OF
EXPERIMENTAL SYSTEM FOR PRODUCTION OF
CARBON AEROSO
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Fig. 2 schematic diagram of experimental system used for collection of carbon aerosol formed in
corona discharge.
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ABSTRACT

We report the results of a series of experiments in which single domain iron particles (20-
50 nm radius) were condensed from the gase phase in the presence of a magnetic field.
Coagulation of these particles was extremely efficient and resulted in the formation of long
chains of single particles. The remanent magnetization of the chains was a few percent of
saturation and these chains were magnetically hard: a field of 1650 gauss was required to
demagnetize one half of the saturation remnance in our samples. Our results are completely
consistent with the enhanced coagulation efficiency expected of strong magnetic dipoies.
We suspect that these particles will have a very flat spectral response and should therefore
be very efficient absorbers of microwave radiation.

INTRODUCTION

The thermal decomposition of iron pentocarbonyl at temperatures in excess of - 500 K can
be utilized to form nanometer-scale iron particles, if the decomposition occurs under
reducing conditions. In this study we report on the results of a series of experiments in
which very small iron grains produced via thermal decomposition and vapor phase
nucleation rapidly coagulated into long (- 10 cm) strands which formed an interconnected
web. At progressively lower iron pentacarbonyl concentrations the particles formed shorter
(- 2-3 cm) thread-like strands and small (- 1rmm) "dustballs" on increasingly longer
timescales.

In the following sections we will briefly describe our experimental apparatus, the
phenomenology of our experimental results and the results of both microscopic and
magnetic analyses of the iron particles. We will then present an explanation for the
extraordinarily high coagulation efficiency which we observe in our experiments and which
can also explain the unique morphology of the final aggregate. We conclude by speculating
on rather unique optical properties which might be expected for these iron webs.

Experiment

In these experiments very small iron particles were produced by flowing iron pentacarbonyl
diluted in hydrogen through a furnace at temperatures ig excess of 500 K at total pressures
on the order of 100 to. The furnace consists of an aluminum oxide tube which passes
through the center of a 5.6 cm diameter graphite bar. The graphite bar is heated by passing
a low voltage AC of between 500 , - - "') amperes through it. This latter is sufficient
power to heat the furnace to temperatures in excess of 1500 K. The overall geometry of the
system is shown in Figure 1.

In previous experiments (Rietmeijer and Nuth, 1991, Nelson et al., 1989) this apparatus
has been used to generate copious quantities of 10-20 nm radius metal and metal oxide

21



particles from volatile precursors such as silane, uimethyl aluminum, iron carbonyl and/or
titanium tetrachloride diluted in hydrogen or helium and allowed to react with oxygen or
nitrous oxide as appropriate. In all of the previous experiments the resulting particles
slowly settled out of the hydrogen or helium carrier gas and were collected on a copper
surface at approximately 300 K. In all of our previous experiments using this system,
coagulation has been mninimal and detectable only by using electron microscopy to study
grain morphology. No evidence for particle coagulation has ever been visually observable
during the experiment.

In these experiments, a flowing gas mixture of - 10 mole percent iron carbonyl diluted in
hydrogen through the furnace at temperatures in excess of 500 K resulted in the initial
formation of a cloud of iron particles as expected. However, several seconds after the
initial particles were observed to form, the cloud suddenly gelled into an interconnected
mass of "webs" (see Figure 2). Dilution of the iron carbonyl by roughly a factor of 100
resulted in the formation of shorter (2-3 cm) "streamers" several tens of seconds after
initiation of the experiment. These floated in the gas stream and usually stuck to the
chamber walls rather than settle out onto the collector. Further dilution by another factor of
10 resulted in the formation of very small (- 1 mm) roughly spherical dustballs occuring
several minutes into the experiment. We have run several hundred experiments in this
apparatus and have never before observed such phenomena.

One obvious hypothesis was that the freshly nucleated iron particles became magnetized in
the high field associated with to the furnace and that this lead to the increased coagulation
efficiency observed in our experiments. To test this hypothesis we ran several experiments
in which we first preheated the furnace to - 1000 K in a pure hydrogen flow and the
turned off the current to the graphite furnace prior to starting the flow of iron carbonyl.
These experiments produced copious quantities of iron particles .s the furnace cooled at a
rate of - 100 K per minute. No evidence for coagulation was observed during the -5
minutes available to initiate formation of the iron particles and for the 3 to 4 minutes
subsequent to our stopping the iron carbonyl flow as the particles gently settled out of the
carrier gas.

Subsequent SEM analyses of these particles confirmed that they were "normal smokes",
10-25 nm in radius and coagulated into short chains only 10-20 particles long. We
attempted to perform a series of experiments in which the iron particles condensed above
the Curie Point by bringing the furnace to - 1300 K prior to starting the flow of iron
carbonyl. Unfortunately the temperature gradient downstreamn of the furnace is extremely
high (>500 K/inch) as is the magnetic field generated by the high electrical current used to
heat the furnace to this tempeiature (- 1200 Amps). We were therefore unable to observe
grains formed at high temperature but which passed through the Curie Point at very low
magnetic field strength. In each of these experiments we formed copious quantities of
webs; quite rapidly.

We performed several experiments in which iron spiderwebs were collected on glass slides
covered in non-magnetic epoxy. The strands appeared to sink evenly into the epoxy which
was then allowed to solidify in vacuo: thus the iron strands were collected without
exposure to the atmosphere and were the sublect of later magnetic analyses.

The magnetic remanance (RM) of the iron webs collected in epoxy and dried in vacuo was
measured using a liquid helium cooled superconducting magnetometer. The samples were
then subjected to a 10,00(0 Gauss (0.1 Tesla) magnetic field and the saturation remnant
magnetization (SIRM) measured on the same superconducting magnetometer. The ratio
(REM) of the remnant magnetization in the web samples ploduced in the flow system to the
saturation magnetic remnance for each of the three samples is given in Table 1. REM
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values of a few percent suggest that the remnance acquisition mechanism is extremely
efficient. The magnetic remnance in tie web samples was acquired as the result of
exposure to a magnetic field estimated to be at most 35-90 Gauss just outside the furnace,
although no field measurements were made. This estimate was based on the geometry of
the system and the 500-1200 ampere AC current typically used to heat the furnace.

Alternating field demagnetization studies were also perfomnied on the web samples: the
results were identical for three samples and are presented in Figure 3. A field of 1650
Gauss (165 mT) was required to dernagnetize one-half of the saturation remnance in the
samples, indicating that the material making up the web is magnetically hard. These chains
appear to be magnetically harder than a non-interacting dispersion of iron spheres in a
copper mau'ix with a size distribution between - 20-35 nm (Wasilewski, 1981' It may be
that the coagulation of the initial distribution of spheres into sintered chains (see below)
allows an approximation to stable single domain behavior in strings containing tens of iron
particles.

The morphology of the web was studied using optical microscopy, scanning electron
microscopy and transmission electron microscopy. The web consisted of intersecting
continuous strands a fr'action of a millimeter thick and 4-5 inches long (the collection
chamber is 4" in diameter). Individual strands consist of many kinked smaller strands of
iron particles - 20-50 nm in diameter and many hundreds of particles long (Figure 4).
Individual particles were connected to their neighbors in head-to-tail chains at angles
usually between about 90 and 1800. Very few triplets were observed at angles of either 90
or 1800; the vast majority appear to form at angles on the order of 130'- 150'. Individual
particle boundaries show evidence for much more than simple "sticking"; some evidence is
observed for martensitic transformation at the joints, some joints have deformed into
contact planes and the cha:as show evidence for a continuous overgrowth of a metwl oxide
layer. We suggest that these grains underwent some degree of contact welding due to the
interaction of both surface tension and magnetic dipole forces shortly after or during
coagulation.

Discussion

The iron particles produced in these experiments are within the size-range predicted to
behave as single magnetic domain particles (Butler and Banerjee. 1975) provided that they
are not perfect spheres. Single-domain particles should be very easily magnetized in the
35-90 gauss field present througho'ut most of the experiments and such particles will then
behave as dipole magnets. A dipole in the presence of a non-uniform magnetic field-e.g.
that produced by another dipole - will experience a maximum force at an angle which
maximizes the divergence of the field (Purcell, 1965). If the sticking cross-section is
maximized at an angle to the magnetic pole which maximizes the attractive force between
the dipoles then it would not be unexpected to observe that the average angle betweci any
three individual particles is less than 1800. In general one would predict that the pole of one
particle would be attracted to a point - 450 from the pole of a second. A few triplets could
therefore form at angles as small as 900 while a few others could join at 1800. However,
the vast majority of grains would be expected to form at angle. of - 1350 or so as is
observed.

A first estimate for the increase in efficiency one might expect for the coagulation of
magnetic dipoles as compared to the coagulation of , imnilar size distribution of
unmagnetized iron spheres can be made by calculating the increase in interaction distance,
or effective radius for magnetic dipoles. For unmagnetized iron spheres, the effective
collision cross section is proportional to the square of the geometric radius of the particles.
For magnetic dipole:., attracted to one another by a force which varies as the inverse square
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of the partic!e separation (Weast, 1972), tile increase in effective particle radius can be
calculated by using the analogous increase in the eftective radius of celestal bodies due to
gravitational forces.

For gravitational focusing of interacting planetessimals the increased effective radius (R) of
the target is given by (Opik, 1975)

R = a(1 + V2 /Vo2) 2  (1)

where a is the geometric radius of the target, Ve is the escape velocity of the target and Vo
is the initial velocity of the impactor. The escape velocity for gravitational interactions is
given by

(2)
Sr)

where G is the gravitational constant M is the mass of the target body and r is the initial
separation of the two planetessimals.

The magnetic analogy to gravitational focusing can be consiructe'4 by comparison of the
force between two interacting magnetic dipoles and that between two giavitationally
interacting bodies, e.g.

GM1 M2 ia

Fgrci," 2 FMag 2 (3)
r /Jrl

where M I and M2 are the masses of the celestial bodies, m I and m2 are the magnetic pole
strengths, r is the particle separation and li is the magnetic permeability equal to unity in a
vacuum. The equivalent "escape velocity" for two interacting magnetic dipoles is therefore
given by

M_2 ,r (4)

where M is tl'e reduced mass of the dipoles.

The average particle separation, r, can be obtained from the initial number density, no, of
single domain iron grains so that

r = (5,
ý 4mirn,

v, L2mrn, ý 3 (6)
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- - ii)I
and R=a 1+2 4n) 0 1m2  "3 (7)S3 ) Mji V":

For 20 nm radius single domain iron particles with a density of 7.86 g/cm 3 and bulk
saturation magnetization of 1720 emu/cm 3 , M is approximately 2.5 x 10-16 g, M 1 equals
M2 and is approximately 1.7 x 10-3 esu. For an initial number density of 106 cm-3 , a
relative velocity on the order of 1 cm/s and g == 1, R = 4 cm, an enhancement in effective
radius by a factor of -2 x 106.

An increase (or decrease) in the initial number density of dipoles has little effect on the
enhancement factor, due to the no1/ 6 dependence of R derived in equation (7). The largest
effect of decreasing no will be to increaase the average time between collisions and decrease
the mass available for coagulation. This appears to be consistent with our observations that
smaller scale aggregates formed on longer timescales as the initial concentration of iron
carbonyl in the flow was decreased.

In the above calculation, we assumed that the single domain iron spheres were completely
magnetized and therefore that M I equaled M2. Equation 7 shows that R is directly
proportioned to M. Accordingly, a slight variation in the pole strength will have little effect
on the enhancement expected in the experiments. However, there is experimental evidence
to suggest that the grains were probably magnetized to nearly saturation. The magnetic
remnance of the web was found to he a few percent of the saturation value. T"1 -
coagulation process for magnetic dipoles should tend to force "North-to-South" pole
contact on grounds of energy minimization, and this would therefore force the cancellation
of the remnant field of individual particles. If the average angle between dipole triplets
were 1800 one would expect very little remanance for macroscopic samples of the web.
Since the average angle between triplets lies between 130'- 1500 as noted above, the
observed remnance is due to incomplete cancellation of the magnetization of the individual
particles. Because cancellation of the remnant field of a large number of dipoles in the
webs is expected to have occurred with some reasonable efficiency, an observed remnant
field of a few percent for the microscopic samples implies a much larger initial degree of
magnetization for individual paiticles. Our assuMption of complete magnetization is
therefore likely to lead to only a relatively small numerical error in calculation of R if
individual particles were actually magnetized to only - 20-50% of their theoretical
maximum.

The optical properties of random aggregates of conducting spheres has been discussed by
Wright (1987) for open clusters of varying fractal dimension. In general the absorption
cross section is proportioned to a power of the frequency: the exact value of the po%, cr
varies between 0.6 and 1.4 over more than two decades in frequency for aggregates of
fractal dimension, D. between -1.7 and 2.5. The lower the fractal dimension, the flatter
the spectrum and thus the lower the calculated exponent. As an example the ratio of the
absorption cross section at I |nicron compared to the absorption cross section at 1
millimeter for spheres, D=3: aggregate, D=2.5: aggregate, D=l.7 is 1704:10:1,
respectively (Wright, 1987). If the absorption cross section at 1 micron is the same for
each of the above cases, the open fractal aggregates have eion-nously enhanced long
wavelength absorption.

25



As noted by Kim and Brock (1987) in their discussions of the formation of ferromagnetic
particles from solution via cation reduction by borohydride ions, the fractal dimension of a
linear chain of particles is one, and the more ferromagnetic particles tend to form lower
fractal dimension aggregates under the influence of an external field. From Figure 4 it is
obvious that the fractal dimension of individual strands produced in our experiments is
quite low; these aggregates are not really linear chains but are really more like highly kinked
strings which have become intertwined to some degree. Because one would expect that the
fractal dimension of "head-to-tail" chains of magnetic dipoles should be nearly I and
because Wright (1987) has demonstrated that lower fractal dimension aggregates appear to
have "flatter" spectra than higher dimension aggregates, one would predict that the long
wavelength absorption cross section for an aggregate of magnetized, single domain iron
grains should be considerably more than 2000 times that for spherical particles of equal
mass.

Conclusions

Magnetically-hard, open nets of very small iron metal grains rapidly form via coagulation in
a laboratory system in which large scale coagulation has never before occurred. We have
shown that magnetically induced dipole-dipole interactions between the magnetized iron
grains increase the grain coagulation efficiency by several orders of magnitude and
probably also increase the strength of the interparticle bonds in the aggregate. We
hypothesize that the optical absorption cross section for an aggregate of magnetically
interacting single domain particles should show considerable enhancement at long
wavelength (> 1 mm) when compared to an equal mass of iron spheres.
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ABSTRACT

We have undertaken a project called STARDUST which is a collaboration with Italian and American
investigators. The goals of this program are to study the condensation and coagulation of refractory
materials from the vapor and to study the properties of the resulting grains as analogs to cosmic dust
particles. To reduce thermal convective currents and to develcp valuable experience in designing an
experiment for the Gas-Grain Simulation Facility aboard Space Station, Freedom we have built and
flown a new chamber to study these processes under periods of microgravity available on NASA's
KC-135 Research Aircraft. Preliminary results from flights with magnesium and zinc are discussed.

INTRODUCTION

Small cosmic dust particles play an important role in several stages of stellar evolution. Major
components of these interstellar grains are refractories such as silicates and carbides which condense in
the outflows of red-giant stars. These refractory materials play a crucial role In the chemistry of the
interstellar medium by serving as sites for chemical reactions and as regulators of the temperature in
denser clouds by absorbing and re-emitting light. Furthermore, the condensation and later coagulation
of such grains will lead to insights into the formation ot larger bodies such as planetesimals and planets.

To understand how refractory particles form and grow we have undertaken a project called STARDUST
as a collaboration between Italian and American investigators. The goals of this program are to study
the piocesses of condensation and coagulation of refractory materials from the vapor and to study the
size, morphology, mechanical strength, and optical properties of the resulting grains as analogs to the
more complex cosmic dust particles. An important first step in this project is the production of a
quiescent suspension of monodisperse, refractory particles. There is evidence that particles formed by
nucleation and condensation of vapor are uniform in size with only a few, if any, aggregate clumps at
the onset of formation, Although the nucleation of a few refractory systems has been investigated in
terrestrial laboratories, accurate studies of the interaction between the fine-grained particulates are
greatly hampered by particle settling effects. Resuspension of small particles by a burst of gas or by
other mechanical motion will result in fast-moving, shearing flows and the break-up of some particles,
while other aggregates formed during the settling process may never break up. Thus uniform,
quiescent suspensions of monodisperse particles In a low pressure gas are difficult, if not impossible to
achieve by the injection or resuspension of previously characterized particulates. Yet such well-
characterized suspensions are Ideal starting points for many of the more Interesting particle interaction
experiments envisioned for the Gas-Grain Simulation Facility on Space Station Freedom. It should be
possible, however, to produce such suspensions by the direct condensation of refractory vapors under
controlled conditions in a microgravity environment. The studies necessary to predict both the size
distribution and characteristics of the particles produced by such a method may also yield high quality
data on the vapor phase nucleation of refractory materials.

Previous experiments on condensation of refractory material from the vapor have also been affected by
thermal convective currents arising from t,'!e high temperatures needed to produce such vapors. As a
result we have designed and built a new apparatus which can be operated aboard NASA's KC-135
Research Aircraft. This aircraft flies in a series of parabolic arches and may produce approximately 23
scconds of weightlessness per parabola, thereby reducing thermal convective currents. This
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microgravity environment is not expected to affect the condensation process itself; rather it should
provide a quiescent environment for condensation and coagulation which is easier to model and more
suitable for producing uniform suspensions of condensed particles. These experiments also provide
valuable information on the production of such refractory suspensions under sustained microgravity and
are in fact crucial steps in the development of coagulation experiments for the Gas-Grain Simulation
Facility for the investigation of the coagulation, mechanical strength, and optical properties of
aggregates of refractory particles. It is believed that during extended periods of weightlessness
suspended particles could coalesce into very different structures than are formed in a Ig gravitational
field--perhaps producing "fluffy" or "fractal-like" structures. These resulting open and porous
structures could have very unusual optical and mechanical properties. It is impossible to form such
aggregates on the ground since any force applied to arrest their settling is likely to crush these
undoubtedly fragile structures. The periods of weightlessness on the KC- 135 are unfortunately too
short to study more than just the initial stages of coagulation, yet these flights will provide excellent
experience in producing uniform, quiescent suspensions and developing in situ techniques for
characterizing the particles and monitoring their interactions.

PREVIOUS WORK

In addition to providing valuable experience in the production of suspensions of refractory particles

from the vapor, experiments on condensation in a microgravity environment may also provide useful
information on the nucleation of these materials. Most of the experiments in refractory nucleation have
been performed with two types of apparatus--the shock tube technique and the gas evaporation method.
The results of both types of experiments are the same: none of the experimental data agree with
Classical Nucleation Theory or its modifications such as the Lothe-Pound formulation. To date, only
Hale's Scaled Nucleation theory has compared successfully with any experimental nucleation data, and
only for two gas evaporation studies of silver and SiO[2]. Hale's theory predicts a relationship between
the critical supersaturation, Sc. and the condensation temperature, T, as follows:

In (S c ) . I "f 3 /2 [ -_ I(1)2[ I

for a flux of particles of 1/cm 3 -s[3]. In this expression the quantities r and Q2 are essentially constant
and Tc is the critical temperature of the material. Equation (I) works quite well with many volatile
substances such as water and alcohols, and for the experimental data for sil -.zr and SiO. Only a
handful of refractory compounds have been studied and more experimental data or .'ditional refractory
substances are needed to test the validity of this or other theories.

EXPERIMENTAL APPARATUS

To study the condensation of refractory vapors and the coagulation of the resulting grains we have
designed and built the chamber shown in Figure 1. It consists of a cylindrical vacuum chamber
separated into two sections. The upper section contains the material to be studied within an alumina
crucible and surrounded by a set of graphite resistive heaters and insulation, The lower half of the
chamber is the viewing region of the apparatus. The graphite heaters serve two purposes: they produce
the refractory vapor and establish a temperature gradient in the viewing region. A laser beam strikes a
rotating, multifaceted mirror and produces a two-dimensional fan of illumination within the chamber.
When vapors from the heater ?.ssembly diffuse into the viewing region, the fan of laser light illuminates
only a cross-section of the condensed smoke particles. The pressure, acceleration level and
temperatures throughout the chamber are recorded using a computerized data acquisition system.
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RESULTS

To date, we have conducted experiments with only two metals: magnesium and zinc. These two
materials are not especially important in astrophysical environments, although magnesium is one of the
more abundant metals in such systems. We have chosen these elements for our initial experimental

studies because of their relatively high vapor pressures. As we develop our apparatus we will P_,",
more -efractory, and therefore more relevant substances such as iron metal and magnesium and iron
silicates. We have tried to apply Hale's Scaled Nucleation theory to the experimental results for both
magnesium and zinc, but the data and the theory do not agree. According to Hale's theory, a plot of
(LoS)2/3 vs. (IMl) should yield a straight line and the ratio of the slope of this line to the negative of the
intercept should yield the critical temperature of the material. Thus far, application of the scaled theory
to the magnesium and zinc data have yielded unreasonably low critical temperatures. Just recently, we
have re-examined shock tube data for iron, bismuth and lead in the form suggested by Hale and found
similarly low critical temperatures, at times even below the boiling point[4]. Therefore we are currently
re-examining the apparatus, the models of the data, and the theory to understand this discrepancy.

The immediate major goal of our work is the production of uniform suspensions of refractory particles.
Although we do not yet have a quantitative way of rating the uniformity of the cloud of smoke particles,
by eye the clouds obtained in zero-g appear to be quite uniform. Figure 2 shows a comparison between
the smoke clouds formed under terrestrial and zero-g conditions. Each figure is a digitized video image
of the viewing region of the chamber taken during experimental runs with magnesium. The source of
vapor is a spout which appears as a bright spot at the top-center of each image. The figure under ig
shows a cloud which is nonuniform and exhibits convective swirls. The image obtained in zero-g
shows what appears to be a uniform suspension of particles. Surrounding the vapor spout there is a
region which is free of particles. During an experimental run in zero-g the smoke cloud slowly moves
away from the vapor source, but this particle-free zone remains essentially stationary. In our nucleation
experiments we are trying to measure the temperature and vapor concentration at the interface between
this particle-fr-,e and particle-rich region.

We have not quanutatively measured the size distribution of the smoke particles within the cloud during
individual parabolas. We have collected particles on SEM grids from various locations with the
chamber. Figure 3 is a set of SEM micrographs from an experiment with zinc metal. The particles in
these micrographs appear to be spherical and rather uniform--both of which are desirable in the design
of a coagulation experiment. In some cases there are aggregates of these small particles which are
branched and chain-like. These particles may be the initial stages of some of the fractal-like particles we
are interested in growing. Some of the nonuniformity of the particles could be due to the changing
conditions and different times in which they adhered to :he SEM grid. During a typical flight, we
undergo approximately 40 parabolic arches; we do not yet have a method of collecting particles from
an individual parabola or from specific regions of the smoke cloud. We are in the process of designing
a more sophisticated particle collection facility to eliminate this problem.

FUTURE WORK

Refractory species over a range of volatilities will be investigated to study the basic mechanism of the
nucleation and condensation phenomenon. Thus far we have studied magnesium and zinc, spi Cies with
relatively high vapor pressures. Examples of intermediate volatility species are SiO and iron and these
materials are being planned for later experiments. Eventually we also want to study "super refractory"
species such as carbon, silicon carbide and aluminum oxide. Thesi; compounds cannot be vaporized
from standard crucibles and will require significant modifications to the existing apparatus. Not only
will higher vapor source temperatures be required but the method of producing vapor will have to be
redesigned as well.

A sampling system for extracting particles from the chamber during the experiment, and the capability
for in situ particle characterization will also need to be developed. These would help to differentiate
between the design change effects and those caused by the extended exposure of the condensate
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particles to the varying environmental conditions in the chamber through the series of parabolic
maneuvers.

CONCLUSIONS

We have presented an overview -f the STARDUST program, a program with long-term goals which
include studying the condei. ,tion, coagulation, and physical and optical properties of refractory
particles as analogs to cosmic dust grains. We have made good progress towards these goals by
producing uniform suspensions of particles from the vapor. The next step is to develop a more
sophisticated method of characterizing the resulting particles and improving the data collection and
analysis of the nucleation of these particles.
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FIGURE 1. Experimental chamber used on NASA's KC- 135 aircraft.
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(a) (b)

FIGURE 2. Digitized video images from experimental imns with magnesium at (a) 1-g and
(b) microgravity.
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FIGURE 3. SEM micrographs of zinc particles at ICOOX magnification. Note aggregates which
look like the initial stages of grwth of fractal-like particles.
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ABSTRACT

The paper presents numerical simulation of dispersion in a turbulent flow field
created by superposition of Taylor-Green vortices. Good agreement between the
simulations and measurements are found.

BACKGROUND

The prediction of dispersion of contaminants in turbulent flows is of
considerable basic and practical interest. We have attempted to simulate the
dispersion of inert scalar tracers in a homogeneous turbulent flow obtained by
superposition of Taylor-Green (TG) vortices (Taylor and Green [1]). Each TG
vortex is described by:

]3

u, - 4 2/V3 sin[Lo + 211 (i - 1)/3] E cos[116I/2 - kRi] ; i = 1, 2, 3. (1)
j-1

Such a flow satisfies the continuity equation for a constant piezometric
pressure. Superposition of eight TG vortices with different sizes, different
phase values 0., different orientations and positions, so that the energy
spectral density of the turbulence E(k) satisfied the -5/3 law: E(k) E. k`3

in a given range kL < k < k2, where kL is the wave number related to the mesh
size of a grid and k2 is the wave number associated with dissipation length, was
used to simulate slowly decaying grid-generated turbulence described in Poreh et
al. 2]. The dispersion of a puff of 104 tracer particles initially located at
a small volume was then calculated numerically.
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TYPICAL RESULTS

Figure I shows the shape of the puff at different times (T) for a given
experiment. Figure 2 shows the superposition of 26 puffs of 1000 particles at
T = 1 s. We have also calculated the integrated concentration (IC) fluctuations
across the puffs and compared their statistical properties with those measured
by Poreh et al. [2]. A very good agreement between the calculated aaid measured
values were found. Figure 3 shows, for example, the measured and calculated
values of the relative rms value of the integrated vertical integrated
ro-c-: .rations (VIC) across a plume.

It was also noted that the typical shapes of the instantaneous puffs were very
similar to the shape of photographed puffs and was not similar at all to that of
Gaussian puffs, which are often used to describe the shape of puffs and
instantaneous plumes.

CONCLUSIONS

The use of Taylor Green vortices for studying the dynamics of diffusion in
turbulent flows appears to be of considerable value. It is proposed to study the
simultaneous diffusion of puffs of different species fronf different sources and
to calculate the correlation between the local concentrations, which could be
used to estimate the possibility of a chemical reactinn between the two species.
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FIGURE 1. PROPORTIONAL (,-D) VIEW OF A TRACER PUFF DISPERSION IN THE FLOW
FIELD AT T = 0.25, 0.50, 0.75 AND 1.00 SECONDS.
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FIGURE. 2. AVERAGE PUFF OBTAINED BY A FIGURE 2. THE DISTRIBUTION OF THE
SUPERPOSITION OF 26 DIFFERENT INTENSITY FLUCTUATIONS
PUFFS OF 103 PARTICLES EACH OF THE VERTICAL INTE-
AT T I S. GRATED CONCENTRATIONS

(VIC).
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ABTRAC"
An electrodynamic levitation trap is used to suspend charged microparticles in a

horizontally-flowing gas of known velocity and viscosity. Orthogonal DC electric fields
permit both gravitational arid Stokes drag forces to be balanced independently, allowing
determination of the particle's mass, diameter and charge. Future work will investigate
the influence of humid gas flows on the size of levitated microdroplets.

INTRODUCTION

Electrodynamic levitation traps were originally developed by Wuerker 1, et al, in
connection with fusion research in the late 1950's. Under the simplest condition of a
single particle in an evacuated trap, particle motion is described by a set of Mathieu
differential equations. If the magnitude and frequency of the AC drive voltage to the
trap are in the stable range for a given particle charge-to-mass ratio, stable levitation
will occur. If the trap is not evacuated the stability limits for levitation are extended
due to the damping effect of the air on particle motion. DC cross-fields may be added
to the AC levitation fields to position particles within the trap and to compensate for
external forces such as gravity or the drag force of a flowing gas.

EQUIPMENT DESCRIFTION

A cubical trap geometry with six planar electrodes and two-phase AC drive as
described by Kendall 2, et al, was used for this work. The cell and its co-ordinate axes
are shown in Figure 1. The inside dimension of the trap was 3.2 cm on a side. The
front and back faces were constructed of transparent conductive glass allowing levitated
microparticles to be observed by microscope or video camera. Gas entered the trap
through a porous copper wall to prevent turbulence, and exited from the mesh-covered
opposite face. The top and bottom electrodes, which in this cell design do not require
AC drive, were made of solid insulated aluminum plates with 1.3 cm diameter holes
bored through their centers and covered with fine wire mesh. Microparticles were
charged and injected into the trap through the hole in the top electrode while the hole in
the bottom electrode was used to illuminate the microparticle via a helium-neon or
argon laser.
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AC signals on the order of 1kV rms with 60 degree phase difference were used
to drive the two pairs of vertical electrodes. The DC cross-fields were superimposed
upon these signals (in the case of the x and y fields) or applied directly (in the case of
the z fielu).

Particles used in the initial experiments were glass beads of nominal 10 micron
radius. They were launched from an aluminum cup, with a small hole in the bottom,
which was mounted above the hole in the top electrode of the trap. It was elevated to
approximately 15-20 kV during particle launching which charged the beads and caused
some to be expelled from the launcher into the trap. Later work will involve liquid
droplets.

The controlled air flow was passed through the trap in the positive y direction.

Figure 2 shows the levitation trap and the apparatus connected to it for use in
aerosol studies.
DUTF MbMAION OF vnCLE SIZ,

It is assumed that the microparticles are spherical and of radius r, mass m, charge q
and known density p. It is further assumed that the gas flow, of known velocity U and
known viscosity 71, is low enough for Stokes' Law to be valid (Reynolds number less thanl
one).

With a levitated particle brought to the center of the cell by a vertical field Ez, we
have

qE7 - mg = 4/3 nr3pg. (1)

The gas flow is then turned on and the particle recentered usn.8 a horizontal field:

qEy=6nrjrU. (2)

Eliminating q, we obtain

r2 9E-= 7U (3a)
2EYp8

Because of the three-axis symmetry of this type of cell, the ratio of fields must be
the same as the ratio of the applied DC voltages, so that finally

r2 = 9V,/U (3b)
2 Vpg

This gives the radius, and hence the mass
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PREIWMINARY RESULTS

The first measurements indicated particle radii spread over the range 5-15
microns. Analysis of the actual size distribution of these nominally 10 micron radius
particles showed that they actually covered this wide range. After sieving to reduce the
range to 10-12.5 microns, consistent results were obtained.

The volume flow rate was varied over the range 0-40 cm 3/second and plotted
against the corresponding cross-field voltage Vy. The result was a straight line,

confirming the validity of equation (2) above. This linear range appears to continue up
to the highest flow velocities so far used, which correspond to a Stokes drag force of
seven times the particle's weight. It was noted that the x and z crossfields required no
adjustments over the full flow range, indicating that the gas flow was accurately aligned
with the y axis.

In the early experiments there was evidence of a non-uniform (but stable) flow
distribution over the cross-section of the cell, necessitating an additional correction
factor to obtain central velocity from volume flow rate. The general effectiveness of the
porous-wall inlet in reducing turbulcnce was, however, confirmed by reversing the
flow direction so that the gas entered through the metal electrode mesh. This produced
severe instability.

Modifications to the inlet system are currently being carried out, Further
measurements will then be made using particles of more accurately known sizes.
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Modeling and Measurement of the
Effective Drag Coefficient in

Decelerating and Non-Accelerating
Turbulent Gas-Solids Dilute Phase Flow of

Large Particles in a Vertical Transport Pipe
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Abstract

The one-dimensional modeling of decelerating and non-accelerating turbulent
dilute phase flow has been studied by transporting 1 mm glass spheres with air in a
28.45 mm grounded stainless steel pipe. The two-fluid model used to analyze the
data employs the continuity and individual phase momentum balances from the
model of Nakamura and Capes (1). Slip Reynolds numbers for the particles ranged
from 471 to 986 and the pipe Reynolds number was of the order of 20000. The
loading ratio varied from 5.6 to 17.1.

Evidence is presented to support the existence of a particle free region near the
wall making it possible to neglect particle-wall friction effects in the modeling. Fluid-
wall friction effects were then modeled assuming turbulent flow in a pipe without
particles

The non-acceleration drag coefficient, Cdn, correlates as 9.56 x 104 /Repl. 9 6 or
4 eAr
3 Rep2 It decreases froi values essentially the same as those on the standard

drag curve to values significantly below that curve. Cdn is 0.13 when Rep equals 986,
a result attributed to freestream turbulence,

The slip velocity decreases with distance from the pipe inlet so that relative to
the gas phase the particle phase is decelerating. The deceleration drag coefficient was
correlated by the equation

Cdd = (Cdn + (4/3)K ENA [(Pp/Pf)- 1 [dp(-dUR/dt)/UR2 ] 1 [(1 "NA)/( 1-E)]

where K = 1.021 - 0.0188 (Ppc2/Pfcl).

The effect of electrostatic forces on the drag coefficient and particle-wall friction
factor are also discussed. Full text of paper will appear shortly in the Journal
Powder Technology,
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Nomenclature

Ar Archimedes number d= 3pf(pp-pf)g

cl Superficial gas phase velocity, Q£, if/sPf

C2 Superficial particle phase velocity, G__, m/sPp

Cdd Effective particle drag coefficient in decelerating flow

Cdn Effective particle drag coefficient in non-accelerating flow

dp Particle diameter, m

Gf Mass flux of fluid phase, kg/m 2 s

Gp Mass flux of particle phase, kg/m2 s

Rep Slip Reynolds number = dp UR/V

t time

UR Slip velocity, (u-v), rn/s

Greek Symbols

,(Q) = dc/d

Pf Fluid density, kg/m3

pp Particle density, kg/m3

Subscripts

d Decelerating

NA non-accelerating
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ABSTRACT

The problem of scattering and absorption of electromagnetic radiation by particles can be solved
analytically for only the simplest cases, but established numerical methods allow a straightforward
extension to particles with arbitrary inhomogeneities, shapes, and nonlinear response. The finite
element technique recently suggested by L. A. Liebman, M. K. Choi and J. R. Brock [1] had a
difficulty in that the boundary condition at infinity needed to be employed at an arbitrarily
determined and finite maximum boundary of domain. This difficulty can be removed by applying
the boundary element method outside the particle. In this paper, a hybrid method is presented that
combines the finite element method applied inside the particle and the boundary element method
outside the particle and is applied to the problem of a dielectric sphere of arbitrary size parameter.
Numerical results showing good agreement with analytical solutions for size parameters of 2.97 to
21 and light wavelength of 10.591 4m, are given. Results obtained suggest that the hybrid method
has promise for analytically intractable scattering/absorption problems and show that the Debye
amplitude formulation of the problem offers advantages in a numerical scheme. We plan to extend
this method to anisotropic particles of various shapes as well as to nonlinear problems.
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I. INTRODUCTION
Mie theory exactly describes the absorption and scattering of a plane electromagnetic wave

by an isotropic, dielectric sphere of arbitrary size and refractive index [2]. This conceptually simple
analytical solution is well known, but it involves cumbersome computations. However, many
problems of interest do not readily admit analytical calculation. If a systematic numerical rather than
an analytical approach is taken, its extension to particles with arbitrary inhomogeneities, arbitrary
shapes, and nonlinear response is apparent since the general governing equations and the solution
technique are preserved.

For comparable electromagnetic wave scattering problems in radio and microwave
engineering, differential methods have been used predominantly [3]. Finite difference methods and
finite element methods are typical differential solution techniques, and both can be applied to the
Maxwell equations in their time-domain or frequency-domain form. While these methods have
been applied in various disciplines for some time [4,5,6,7,8,9,101, they have not been adapted in a
straightforward way to study the absorption and scattering of light by small particles.

In the majority of past work, problems have been solved in terms of vector field variables
(E,H) that are oscillatory in nature over the infinite domain of the scattering problem. The
difficulty of modeling these oscillations is removed here by reformulating the problem in terms of
the Debye amplitude (DA) functions, described below. Another complication in scattering
problems is the treatment of the particle surface and the determination of the internal fields. This
issue has been considered in previous time-domain [9] and frequency-domain 181 solution
methods, although past investigations have involved perfect conductors (no internal fields).

Recently a finite element technique was devised to deal with the present problem by L.A.
Liebman et al [1]. Because the boundary condition at infinity had to be used at an arbitrarily
chosen finite boundary, the finite element method as applied entailed an inherent error at this
maximum boundary of domain. A sufficiently large computational domain may not be feasible
because of limitations in available computer memory. The larger the particle size, the larger the
computational domain should be since the larger region outside the particle is influenced by
scattering. Moreover the smaller the wavelength of light, the more oscillatory the light wave, and
denser meshes are required. Consequently, the finite element method was employed to yield
correct solutions for small size parameters. A new idea is to introduce the boundary element
method outside the particle to remove the boundary condition at infinity. Although one can apply
the boundary element method inside the particle, also, for a linear problem, we retain the finite
element method inside the particle with a view to extending the present investigation to a nonlinear
probiem. This combination of the finite element method and the boundary element method.
termed the hybrid method, has several advantages over the conventional finite element technique.
First of all, the hybrid method enables the xemoval of the boundary condition at infinity.
Secondly, since the calculation is limited to the real boundary of the particle surface and its interior.
the memory storage requirement is greatly reduced. This hybrid method has been explored recently
in acoustic wave investigation 1111. Here, our new hybrid method is applied to solve
electromagnetic wave propagation, followed by presentation of results of comparisons between
analytical and numerical solutions.
II. FORMULATION OF SCATTERING AND ABSORPTION BY A DIELECTRIC
SPHERE

In the general case, the problem consists of a particle of arbitrary (but specified) size,
shape, and composition surrounded by a material that is also of arbitrary composition; a beam of
light with arbitrary characteristics illuminates the particle. Given the scatterer and the incident field,
the object is to determine the field in both the internal and external regions.

It is assumed that the incident field associated with the light source is that of a plane
harmonic wave, and that the scatterer does not perturb the field's source. Plane waves are good
approximations of incident fields in scattering problems, with an exception being a field due to a
tightly focused laser beam whose local beam diameter is close to or smaller than the size of the
particle it is illuminating. As waves that are not time-harmonic can be constructed by Fourier
synthesis if the particle and surrounding media are linear, this assumption is not overly restrictive-
for linear interactions, arbitrarily time-dependent electromagnetic fields can be obtained by a
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superposition of sinusoidal steady stdtes. The materials are assumed to be homogeneous, linear,
and isotropic which means that their phenomenological coefficients (conductivity (a), magnetic

permeability (gi), and electric susceptibility (Q)) are i.. iependent of position, fields, and direction.
The medium surrounding the particle is also infinite and nonabsorbing.

Figure 1 depicts an electromagnetic wave incident on an arbitrary particle. The incident
field (Ei, Hi) induces a field (Ell, HII) inside the particle and gives rise to a scattered field (Es, Hs)
in the surrounding medium. The total field in the external region (El, HI) is obtained by
superposition. The electric and magnetic vectors in both the internal and external regions must
satisfy the macroscopic Maxwell equations which govern the behavior of electromagnetic fields at
interior points. Taking the harmonic time dependence to be ei"it for all fields and assuming no free
charge, the Maxwell equations are reduced to a set of vector wave equations for the electric field, E
and magnetic field, H,

V2E + k2E =0 (1)
V2H + k2H = 0 (2)

where

k = wave number; k = eY•f'i; e = complex permittivity.
As the fields, E and H are only required to satisfy the Maxwell equations in regions

throughout which the physical properties (characterized by e and 4) are continuous, the fields must
satisfy boundary conditions at the interface between the particle and the surrounding medium.
Since c and gt change abruptly over a region of atomic dimensions, macroscopically the boundary
between homogeneous materials is a sharp discontinuity. The requirements at the boundary are
obtained by considering the Maxwell equations in their integral form and applying Gauss' theorem
112,131. Doing so gives

An x (El - Ell) =0 (3)

hn × (HI - HII) =0 (4)
where

A
n = unit normal to the particle/medium interface, directed outward from the particle (II)

to the medium (1),
which is the condition that the tangential components of the electromagnetic fields are continuous
across the boundary. Equations (3) and (4) constitute a necessary and sufficient condition to
ensure energy conservation through the interf-,ce [2].

Thus, the problem to be considered is: Given a particle and Ei, determine Es and Ell so
that the Maxwell equations (1) and (2) are satisfied in the particle and surrounding Medium and so
that the boundary conditions (3) and (4) are satisfied on the interface. The problem to be solved
consists of a plane polarized wave incident on a dielectric particle; only linear scattering is
considered. Assuming exp(-ioat) dependence for all fields, the electric and magnetic fields, E and
H, must satisfy the vector wave equations both inside and outside the particle, with a requirement
that the tangential components of E and 1i must be continuous across the surface of the particle and
the Sommerfeld radiation condition requires that the scattered fields represent divergent traveling
waves as r -4 oo.
III. SOLUTION METHOD

Bvy itroducing two auxiliary scalar ftunction-, the electric and magnetic Debye potentials, u
and v, in the usual way [14,15,16], it is possible to reduce the vector wave equations to a set of
uncoupled scalar wave equations.
A. Debye amplitude functions

Since the field variables are oscillatory in nature over the infinite domain it is advantageous
to reformulate the problem once again, this time in terms of a generalized amplitude function which
eliminates the oscillations due to the incident field [17]; use of these Debye amplitude functions
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(DAs) is desirable in a numerical approach. As demonstrated here and in the previous publication
[1], we have found no important degradation in accuracy in recalculating the field observables,
such as for example the source function, from the DAs. The Debye potentials are expressed in
terms of the amplitude functions a3

cosO sinO eftr

(ku)2  (r'O)

- sine sinO
S(,,1/2 sin) f2(r,s) -e"-- (6)

1p ) (k') 2  f2 r,1~
where the superscript "I" denotes the exterior region and the superscript "fi" will denote the interior
region and k2= w2E4.. The newly introduced function,fi (r,O) is the DA. It should be noted that
the formulation of Eqs. (5) and (6) inherently restricts one to the consideration of only
axisymmetiic problems. For asymmetric cases the 0 dependence of the Debye potentials cannot be
factored out explicitly and one must solve forfi (r,O, 0).

By substituting Eqs. (5) and (6) into their respective scalar wave equation. it can be shown
that the interior problem to be solved is

-V V I eikOr) -20at ei k'rf ýr -'" +2')ei kl(f 1r +-- +iklf )ei Orf | k2 . =02

r2 r Dr /r2 (7)

-Zi /2 2 --,2 f kS r I 1. , (8)

where the inclision of the (Ejla) factor and the retention of the exponential factors is arbitrarily do:.e
for convenience in applying the boundary conditions. The boundary conditions are, in terms of the
Debye potentials:

J co El (n'Ul)r--a w 0 1 Eli HulI)r- (9)

- (ul)r0a (nl")r=a (10)

i co • (rvl'ra = i 0 1I1 (rvll)r-a (11

ar (rvI)rHa = (rvlI)r'• (12)

Equations (9) through (12) are formulated for a spherical particle, with radius "a". For the general
nonspherical problem, Eqs. (9) - (12) must be satisfied at all (x,y) on &-e particle surface and the
partial derivatives are given by Vf- n.
B. Finite element approximation

Using Galerkin's method [18] for constructing the finite element approximation, the
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solutions to (7) and (8) are sought over a grid as in Fig. 2 having Nn nodes. The Debye amplitude
functions, f, and f 2 are of the form

Nn
f(r,0) = Xt~j(r,0) (3.,fbjrO (13)

j=I
and the weight functions are given by

Nn

v(r,0) = .)v•j(r,0) (14)
j=1

where
f(r,0) = eitherf1 orf 2

/= eitherf1 (r,0 -) orf 2(rj,Oj), appropriately
n = number of nfodes in the finite element grid

vWr,O) = either v, or v-)
vj = either v,(rj,0j) or v,(rj,0j), appropriately

Dj(r.0) = global basis functions.
Substituting (13) and (14) into the weak form of (7) or (8) gives a system of linear algebraicequations that can be represented by

Nn

IKi/J = Fi, i=,2 .... Nn (15)
j=-'

where lj represents a component of the NnxNn stiffness matrix K and Fi represents an element of

the Nnx l load vector F.
In this study the finite elements are nine-node Lagrange quadrilaterals 119] and the

elemental area integrations are calculated using Gaussian quadrature of order 3x3. The line
integrals along elemental boundaries are determined using second-order Gauss quadrature.
C. Boundery Element Meth, I

Theoretically the original domain of this problem is infinite. As the radial distance, r,
approaches infinity, the Sommerfeld radiation condition 113] applies:

m r"-- ikul = 0 (16a)
r-4oo ~ r

r - ikvl = 0. (16b)

By using Green's second identity the scalar wave equation.,; outside the particle and the aboveradiation condition can be transformed to a pair of surface integral equations 1201,

-2nluk = - + g -n)dS -4iru(i) (17a)

-2n vik = f(-vl ý+ g )dS -4nv('J, 0 (17b)

where g is the Green's function for the Helmholtz equation, expressed by
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,y - exp(i kI Ix-xkl) (18)
IX-XkI

with the position vector x and the outward normal n on the particle surface. The subscript, k
signifies the position of point force for the Green's function, and the superscript. (i) represents the
incident light. The Debye potentials of incident light are expressed [17] as

u(i) = coso W (19a)
(kh)2 r

sinov(i )2 W (19b)

where

W(r,0) exp(iklr cos0) (0 expO.klr) (8 '\exp(-iklr)
co6 sinc, -- - tanio L 2 " (20)

Since there is an integrable singularity at the point force of Green's function. one may have
difficulty evalu;,,ing Eqs. (17) numerically. It is noted, however, that the Green's function for the
Helmholtz equation can be divided into two parts, one for the Laplace equation and the other for
the remainder 1211.

exp( i kI Ix-xk)- + 1 (
gy -i A.•,kl Ix-XkI (21)

The first portion is non~ingular and may be intecgrated in the 0 direction using standard Gaussian
quardrature. The second is the Green's functiot. for the Laplace equation. For an axisymmetric
Laplace equation the surface integrals iivolving ; 'tegrable singularities can he easify treated
analytically around the point force in terms of elliptic integrals of the first and second kind [221.
Equations (17) can be evaluated numerically for a body of revolution by iinearl, discretizing the
surface in the spherical coordinate system. Since. for validation purposes. only a spherical shape is
treated here, the surface is exactly expressed by linear elements. With two nodes used on each
element in the direction of the rpherical angle, 0, the Debye potentials. uI and vA and their derivatves
are also approximated linearly.

Onlv the interior fields are discussed here; however, in principle scattered fields can be
easily calculated at a specific position of the exterior region by the following equations:

-47t Ulk = (-u 1I + g -j-) dS - 47tui) (22a)
f d n ,D

-4lr vik = ( n + g -)dS - 4t v0), (22b)

where the singular point xk for the Green's function, g, lies at the scattering measure position of
the exterior region. Once the Debye potentials, ul and vI, are calculated on the particle surface by
Eqs. (t17, orie can obtain ulk and vAk by using them in the surface integrals of Eqs. (22).
D. Lagrange multiplier approach

Some algebraic manipulation of the discretized boundary element formulation and the two
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surface boundary conditions yields a new boundary condition on the particle surface in terms of the
interior Debye potential amplitude functions. Thus one more equation is made than the number of
variables since the FEM formulation inside the particle already gives the same number of equations
as that of unknowns. To allow for this characteristic, a Lagrange multiplier approach [ 18] is taken,
adding additional interface constraint elements. Since one multiplier, X is added for each of the
surface points, satisfying the additional boundary constraint comes at the cost of increasing both
the number of unknowns and the number of linear constraint equations.

The system of equations in (15) must be modified to include the boundary constraint
equations, which have the form

Cf = p (23)

where
C NbxNn constraint matrix made as a new surface boundary condition

f Nnx I vector containing the unknownsfy

p= NbX vector containing W
The problem is now described by

KC f EF (24)
where

% :- Nbx 1 vector containing the multipliers, ki
CT = -.he transpose of C.

E. Matrix.;olution
As all fir.ice element computations presented in this investigation were performed on a Cray

Y-MP8/864. !he subroutine HCGBLE, part of the Boeing Computer Services mathematical library
1231 was used to sollv Eq. (24) forf, andf 2 . The subroutine HCGBLE performs Gaussian
elimination with partial pivoting to compute the LU factorization of the first matrix in Eq. (24),
which is a gt..,eral branded matrix having elements that are complex.
F. Calculation o; .ource.function

Or-" one calculates the Debye amplitude functions,!f and f 2, the Debye potentials, u and v
may be oL. ,'!Cd by Eqs. (5) and (6). Then the electric field, E, represented by [ 14]

E. V x [,Vru x r ] + icor.Vx (25)
can be calcuiated at every point in the domain by approximating the differentiation by central
differenct, Since the aosorption of radiation by dielectric particles is of particular interest here. the
source f,,nction. oefined by I E 1 ., should be investigated.

Il. Rt.. 3IUi.,T AND DISCUSSIONS
For t a';dattori of the computational techniques, initial investigations have been performed

for ,. in%:ar.v po:.ri-ied platie harmonic wave incident on a spherical particle, by varying the size
pararn~twr. " .. and the refractive index of the particle. The particle was isolatcd and
surrounded ',. air. ),;surnme to have a refractive index of 1.0. The size parameters studied ranged
from 2.97 to 2,, which covered various situations including three different water droplets and an
utisptcified aerosol particle, and !0.6 p.m for the wavelength of light. The input parameters for
foir different cjc.,.s are summarized in Table I.

Comp~arisons between ana!yti,-al and numerical solutions are presented for the four different
examples in Figs. 3-8. The results for the first three cases were obtained using a 20x60 uniform
mesh ind required -34,6 seconds of Cray YMP CPU time (including output time for results, with a
code that ias not been fully vectorized) to determine fl'f2, the source function, and the error
measure called L2-nomi (defined later) over the entire computational domain. The last example for
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a 35 g water drop required a 40x60 mesh and 422 seconds of CPU time. The figures show the
source functions obtained numerically and those from the Mie solution along the z-axis which is
coincident with the direction of propagation of the light. The particle is centered at the origin which
is at the center of the plot, and the z-axis shows distances in micrometers. By comparing the solid
line of the Mie solution and the nu nerical points, excellent agreement between the two solutions
can be noted.

It is not necessary to rely on subjective impressions of agreement between exact and
numerical solutions; a quantitative measure of the error of the numerical solution over its domain is
given by the L2-norm, which is defined for complex functions as

L2 r(( e') dA]1/2 (26)

where e is the difference between the analytical (exact) and the numerical solution and eo is the
complex conjugate of e. The better the numerical approximation, the closer L2-norm is to zero. The
L2 -norms for the source functions are 2.42x10"5 , 1.086x10"4 , 1.59x 10"5 and 3.000x0 4 ,
respectively for the four different examples. The corresponding values for the L2 -norm obtained
by FEM only were 2.907x10"4 ,7.417x104, 1.89x10"4 , and 8.527x 10-3. A dramatic reduction of
L2 -norms is therefore obtained by switching to the hybrid method from FEM.These results are
summarized in Table 1 below.
TABLE I

Example Particle Refractive index Wavelength Size L2-norm of
material of particle of light parameter, x source function

I(ig. 3) water 1.7§ + 0.07 10.6 gm 2.0 2,42 x 10-4
IV (Fig. 4) arbitrary 1.87 + i 0.15 10.6 gtm 5.93 1.09 X 10-4

VT(Fig.5)3 ice 1.097 + i 0.134 10.6 pm - 7 1.59 x 10-5
llFig. 6) water 1.179 + i .071 10.6 gm 21 3.00 X 10-4

V. CONC I tUSiONS
For the hybrid method, it is demonstrated that the computation times are not prohibitive and

that the relationship between CPU time and size parameter, x is favorable. Additionally, the L2-
norms do nz-t increase excessively with ircreasing x, demonsuating, for examples studied so far,
that the accuracy of the solutions, with sufficient mesh refinement, need not degrade with
increasing size parameter. These findings support the idea that much larger spherical particles as
well as more complex scatterers can be studied without modifying the underlying solution
technique presented here.
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Fig. I, Absorption and scattering by an arbitrary particle.
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Fig. 3. Source functions calculated along the z-axis from numerical (points) and Mie (solid line)
solutions for Debye amplitude functions for a water droplet of diameter 10 Am surrounded
by air, illuminated by a 10,6 Am polarized plane wave (example I in Table I).
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Fig. 4. Source functions calculated along the z-axis from numerical (points) and Mie (solid line)
solutions for Debye amplitude functions for an unspecified aerosol particle of diameter 20
gm surrounded by air, illuminated by a 10.6 .tm polarized plane wave (example I1 in
Table 1).
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Fig. 5. Source functions calculated along the z-axis from numerical (points) and Mie (solid iine)
solutions for Debye amplitude functions for an ice particle of diameter 10 •.m surrounded
bv air. illuminated by a 10.-o 4m polarized plane wave (example III in Tabie I).
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Explosive Dissemination of Obscurants
for the Protection of Men and Material,

Plasma Production, Intermediate Reactions,
Dispersion by Wind over Nonflat Terrain,

And Extinction Properties of Fiber, Spheroid, and
Complex

Particles in an Aerosol over the Complete
Range of Interrogating Electromagnetic Radiation

D. K. Cohoon

September 21, 1993

This work has three parts. We are going analyze explosions, chemical reactions in
clouds, fiber and flake fallout rates and the bouyancy of dispersed clouds of materials
and the ability of this cloud of material to obscure men and material from interrogating
electromagnetic radiation over the entire frequency band of detection and imaging devices.

We consider a bounded three dimensional body with full tensor bianisotropy covered
with impedance sheets.

We conclude with a generul surface integral equation formulation which will permit
analysis of a complex of homogeneous structures whose regions ,f homogeneity of elec-
tromagnetic properties may be as general as the interiors of diffeornorphs of N handled
spheres.
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1 Explosive Dissemination and Dispersion in a Wind

We give here a modification, for an exploding grenade source, of a fairly simple model
of drift of a cloud was developed of obscurants was developed by Peterson and Seinfeld
([42]) which includcs a horizontal and verticle drift term and a general fall out term, a
kind of simple heat-like equation with a cooling term which represents the fall out of the
obscurant with mean concentration c(x, y, z, t) that is given by

&cO c Oc _C a (I>Oc ) (v c\ k+ U-TX- w- Oz - - k-c

where
the mean wind speed in the x direction

the settling velocity

K11 = the horizontal eddy diffusivity

Kv = the vertical eddy diffusivity

k = the first order rate constant
for the removal of the species

The exploding grenade is a point source boundary condition at x equal to zero that is
given by

c(0, ,z,t) 0 .,)6(z - zs)6(t)
U
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wheie
6 = the dirac delta function

It makes sense that at infinite lateral distance the concentration approaches zero so that

LIM
c(x,y,z,t) = 0

and
LIM c(x,y,z,t) 

= 0

There is assumed to be an elevated inversion base z = H0 which inhibits vertical turbulent
mixing at which we have

LIM (8, = 0

Z--+ H. kazi

The obscurant may be removed by deposition across a layer at height z = z" through
deposition with deposition velocity vd so that

LIM (Kvac +,c
2; -- Z' •Z ý7z C • d

While this model does not have all of the physical details, it is sensible in a sense, is easily
understood, and has the advantages of

"* giving an immediate sense of progress on the solution of the explosive dispersion
problem,

"* having an exact analytical solution that could be run over a wide range of parameters
with almost no computer cost, and

"* serving as an exact benchmark for genera] numerical codes whose accuracy might be
questioned as the programming was being developed initially.

A similar equation was considered by Seigneur and Saxena ([51]) which includes reac-
tionts aiid is given by

at - ( Y ) + +

Rj(Ci," ,Cv, k, ,km) + Ti(Ci, n(r)) + Sj

Si emission rate of smoke from the grenade
(C, = ensemble aid spatially averaged concentration

of ,species i
N = the total number of species
R, = the reaction. iate of species i and
k, = the kinctic rate constants
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If we drop the reaction rate term and use S, as a dirac delta source term for the explosion,
this could be solved exactly using transforms and convolution operations.

The motion of smoke over non flat terrain could use the model of Hunt ([29]) to describe
motion over a hill.

The recent powder dispersion by an explosion analysis given by Lipanov ([35]) will
probably give a rigorous method of treating the problem and the solution would be bench-
marked by our exact solutions.

We consider in th s paper general methods for solving electromagnetic scattering prob-
lems that have promise for reducing computation time while increasing accuracy. While
one of the methods involves integral equation formulations, method differs from the popular
method of moment computations in that instead of guessing at the accuracy by requir-
ing a certain sampling rate, the solution of the integral equation, using the exact finite
rank integral equation methods described in this paper, is obtained to computing machine
precision as it is possible to do with ordinary differential equation codes with the proper
scaling of variables.

The general explosion problem and dispersion problem require solution of a free bound-
ary value problem ([19]) involving at least the mass conservation, momentum conservation,
and energy conservation equation with a relation involving pressure and temperature that
includes a complete description of all chemical reactions (a reaction diffusion equation).
No exact solution exists for this coupled system of partial differential equations, but some
robust numerical methods have been. developed by many workers ([18], [31], [39], [48])

2 Treating Extinction and Absorption

The main idea is to know how well particles in a cloud extinguish and absorb electro-
magnetic radiation.

The electromagnetic scattering problem is what is mathematically called a transmission
problem which in this case involves solving the Faraday ([45]) and Ampere ([40]) Maxwell
equations inside and outside the aerosol particle. Recently, McCartin and Dicello ([38]),
Rappaport and Smith ([45]) have worked out a method of attacking the transmission

roiJrblih for the Faraday and Ampere Maxwell equations that one considers numerically
and directly for general anisotropic materials ([38]) and for cylinders([45]) using a FDFD
(finite difference frequency domain) technique when these bodies are subjected to obliquely
incident electromagnetic radiation.

The difficult problem of treating a fiber, which can be modeled reasonably as a finite
length cylinder ([47]) is especially important. One method uses the Mie solution and
expanids the field inside the fiber in terms of vector spherical harmonics ([6]), does the same
for the incoming and scattered fields outside thie fiber aid then tries to match the boundary
conditions on the surface- of the fiber by solving a large systems of linear equations, which is
the e.xtended boundary condition. There is nothing theoretically wrong with the concept,
but existing computers have bel•c unable to treat accurately the fibers which are very long
ii comparison with the( diameter of the fiber.

Them-. are other ways to see how which fiber length to diameter might give the cloud
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with the desired properties. This can be carried out by exactly solving the problem of
the scattering of electromagnetic radiation by a prolate spheroid. Some new works on this
subject have been developed. Sinha and MacPhie ([54]) and Cooray ([13] and [12] ) ha.ve
extended the older works and have worked out details of the use of vector spheroidal wave
functions in describing the interaction of electromagnetic radiaion; the hope is that the
electromagnetic fields inside and outside the spheroid will be very accurately described
with just a few terms of the series. Just as with the Mie solution the complete story of
total absorbed power and total scattered power can be determined without solving a large
system of linear equations.

Integral equation formulations ([53]) can be used to describe the interaction of radi-
ation with finite cylinders (which is a reasonable way to describe an arbitarily oriented
fiber), or any other shape for that matter. If one could accurately solve these integeral
equtations, where the a priori unknown induced electromagnetic field appears inside an in-
tegral operator, then one could use boundary conditions to get the total field just outside
the body, one could subtract off the incident field and get the scattered field and by a
careful integration of the Poynting vector over the surface of the finite cylinder one could,
in exactly the same manner as one easily solves these problems for spheres, find the total
absorbed power and the total scattered power for a fiber with an arbitrary orientation. Fi-
nite cylinders have been nicely described as bodies of revolution (Mautz ([37]) and (Glisson
and Wilton [20]) which reduce this problem to that of solving a one dimensional integral
equation for each of the Fourier modes of the field. This is a very sensible thing to do
as it is far better to solve 1000 times, 100 equations in 100 unknowns that to solve one
system involving 100,000 equations, the number of operations being roughly 1000 times
100' or one billion operations versus 100, 0003 (or one quadrillion) operations, which is the
reason that massively parallel computers have been suggested by Cwik, Partee, and Jean
Pattersoi, ([14]) as a method of handling these extremely difficult problems. This seems to
be the best approach to treating the problem of fibers. In what follows here we will discuss
the general problem and methods of carrying out efficient and highly accurate solutions of
the one dimensional integral equations which we derive from the surface integral equations
which are described in the following sections. This method can be used to describe coated
fibers, coated flakes, coated doughnut shaped aerosol particles, and can be benchmarked
easily against anyone's multilayer sphere code.

If you look at the fibers that actually make up the cloud, under a microscope, they
look like finite cylinders except that in portions of their surface the coating is peeling off
like a bad paint job and the hybrid finite element method by Boyse and Seidl for treating
near bodies of revolution ([3]) could probably be valuable.

We develop here some new methods for formulating and solving integral equations de-
scribing the interaction of electromagnetic radiation with complex materials. Such inter-
action problems, for currently used methods, such as the method of moments, are beyond
the capability of existing computers, because each subunit of the particle communicates
radiatively with every other part which makes it impossible to use any time of small wave-
length approximations. The body as a whole is electromagnetically large, while intricate
subunits may be of the order of a wavelength and thereby be in the difficult wavelength
region. You don't really know whirlh approximating techniques are valid until you solve
the original problem accurately. Thus, accurate solutiois, and especially exact solutions
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for specific shapes.

2.1 Classes of Tensor Materials

The most general linearly responding material is the bianisotropic material ([34], p 91)
defined by the equations,

(It is easy to see vhich interchanges leave the above system of equations invariant; this
gives us a way of checking complex codes) The bianisotropic relations are embodied in the
relationship ([34], p 91)

The biisotropic relations ([34], p 92) are

D = ef + ((X - if) ('o e0)) (2.1.3)

and
= (x + 1  (2.1.4)

If in equations (2.1.3) and (2.1.4) the above two equations we set X equal to zero, then we
obtain the Pasteur medium.

The gyroelectric medium (Q2], p 341) is a special case of an anisotropic medium where
the permittivity tensor for a wave propagating in the direction of the z axis has the form

/ (.c,22) 'E(Xy 0
S-I (%,X) (0,Y) 0 (2.1.5)

0 0 e(Zz)

A different type of material is a general type of gyrotropic material ([2], page 342) where
the p)ermittivity has the form,

C0

= E a,•) C(,) )(2.1.6)
A third type of anisotropic material is ([2], p 344) are the biazial and the uniazial material
where the permittivity tensors respectively have the form,

/C' 0 0
0 IF o 0 (2.1.7)
0 0 e•aild( 00
0 F 0 (2.1.8)
0 0 E,

which serve to c'haracterize the optical properties of mrtany types of crystaline materials.
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2.2 Integral Equations and Bianisotropy

Bianisotropic materials, because of their greater complexity, have greater potential
for creating materials with prescribed or desired absorption, transmission, and reflection
properties. Chiral properties are a special case of bianisotropic materials. With chiral
materials there is a special scalar C (Jaggard and Engheta, p 173) such that

1 E- + i~c! (2.2.1)

and
B• H'/• - i~C' E(2.2.2)

With the more general bianisotropic materials described in (Lindell [34]) there are tensors
Sand C such that D and B are related to E and H by the 6 by 6 matrix embodied in

equation (2.1.2). Here the Faraday Maxwell equation has, for time harmonic radiation,
the form

curl(E) = - iwB (2.2.3)

while the Ampere Maxwell equation has the form

curl(H) -- iwD + N. E (2.2.4)

Using these notions we make Maxwell's equations look like the standard Maxwell equations
with complex sources by introducing the generalized electric and magnetic current densities
by the relations,

curl(E) = iwyosH - J.. (2.2.5)

and

cur!(il) - iwe•E + J, (2.2.6)

where the J, appearing in equation (2.2.6) is defined by

,J - E-, + iw=.- - iweoE (2.2.7)

and the Jm appearing in equation (2.2.5) is defined by

1W = - + E - f0fo] (2.2.8)

We can think of the current densities (2.2.7) and (2.2.8) as stimulators of radiation in
ambient space and use the Maxwell equations (2.2.5) and (2.2.6) to formulate the resolution
of the interaction problem as the solution of integral equations. We, however, need to use
the current densities given by (2.2.7) and (2.2.8) to define electric and magnetic charge
densities p, and ,,, by the relations,

div(i) + t 0 (2.2.9)

and Op,•
div(Jm) + 0 (2.2.10)
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We now use the electric and magnetic current densities given by (2.2.7) and (2.2.8) and
the electric and magnetic charge densities given by (2.2.9) and (2.2.10), respectively, to
develop a coupled system of integral equations describing the interaction of electromagnetic
radiation with a bounded bianisotropic body S1. The electric field integral equation is given
by

E grad div(,) G(r~s)dv(s)IW4)l /oo

+ -EOgrad (a(JJ, -n)G(r,s)da(s))

- iw/oj iG(r, s)dv(s)+

- curl (J,.,mG(r, s) dv(s)) (2.2,11)

If the material is nonmagnetic, then there is no nonzero magnetic current density and we
could derive a magnetic field integral equation directly from (2.2.11) simply using Maxwell's
equations. The general magnetic field integral equation may be expressed as

/ -4,*

H- = -grad di(mG(r~sdv(s)

- i'grad (J ,, ( fi')G(r, s)da(s))
W[IO 81Q

- iwfo fa J,,G(r, s)dv(s)+

+ curl (fjJG(r, s)dv(s)) (2.2.12)

where G(r,s) is the rotation invariant, temperate fundamental solution of the Helmholtz
equation,

(A±+ k)G = 6 (2.2.13)

given by

G(r, s) = expL-ikI r - s (2.2.14)
41r Ir - s

Substituting (2.2.7) and (2.2.8) into equations (2.2.11) and (2.2.12) we obtain, the
coupled integral equations for bianisotropic materials. The clectric field integral equation
for a bianisotropic material is given by,

E Ed

-grad j [u - G(r, s)dv(s))

+ -grad (1~W +~i±~ -r fEat] .i-)G(r,s)da(s))
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-wiW injw~. i -17. E H - j

- curl (jiw [Ti.- F1 + go -; ] @(r, (2.2.15))

and the magnetic field integral equation for a bianisotropic material is given by

(Idiv(iw [77l-.17 + E-~ j
H ' - -grad 

- 11 -- G(r, s)dv(s))

f + - 10
-- 9ad (iw r7l. + . -- oH f)G(r, s)da(s)

-iweo in(iw [;7. H. + f. - ,uoHJ )G(r, s)dv(s)+

+ curl (jiW e~ E ± C' Hf - coE] G(r, s)dv(s)) (2.2.16)

In the subsequent sections we shall explore methods of resolving these integral equations
on existing computers using novel, powerful analytical methods of solution.

3 Exact Finite Rank Integral Equation Methods

While we have obtained exact solution- for layered materials, most of the problems
are so complex that one must formulate the interaction problems using integral equations.
The primary focus of this report is to describe the design of complex materials using
an improvement of classical spline methods (Tsai, Massoudi, Durney, and Iskander, pp
1131-1139). This paper is unusual in that comparisons are made between internal fields
predicted from moment method computations and Mie solution computations. Successful
comparisons have been made for linear basis functions without enhancement by exact finite
rank integral equation theory. However, as the scattering bodies become more complex the
computational requirements become larger and larger. With exact finite rank integral
equation tIcory if one has a discretization that enables one to closely approximate the
solution, then refinements can be made by a convergent iterative process based on the
concept that the norm of the difference between an approximate integral operator and the
actual integral operator is simply smaller than one, not necessarily close enough to give
answers of acceptable accuracy. Therl the answer is improved by an iterative process to
any desired precision without the use of additional computer memory.

3.1 Examples of Spaces of Approximation

Solving the electromagnetic transmission problem by finding solutions of Maxwell's
equations inside and outside a penetrable scatterer which satisfy boundary conditions and
radiation conditions requires finctions on a continuum, the preblem is from a practical
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point of view a discrete one and involves estimation of the values of induced and scat-
tered electric and magnetic vectors in the interior and the exterior of the scattering body.
Thus, it is important to understand methods of determining the accuracy with which a
solution of a discrete approximation of an integral equation formulation of an electromag-
netic interaction problem can be obtained. We specifically need to formulate a space of
approximates and a projection operator onto this space of approximates and formulate
a finite rank approximation of the original infinite rank ilitegral equations (2.2.15) and
(2.2.16) such that the precise solution of this approximate equation is exactly the projec-
tion onto the space of approximates of the solution of the original infinite rank integral
equation. We fuAher need to develop a means of correcting our solution so that we may
exactly determine by iteration the difference f - Pf between the solution f of the original
equation and the projection Pf of this solution onto the space of approximLtes, possibly
by an iterative scheme or a series expansion. In this section we illustrate (i) pulse basis

function methods, (ii) linear interpolation, (iii) higher order spline interpolation, and (iv)
a completetely novel LOO norm method of approximating the field components with com-
binations of trignomometric functions of the local spatial variables using carefully selected
frequencies.

We now explain linear interpolation. A common example would be to approximate the
space V of functions which are continuous on [a, b] by members of a set

S ={[Xo,X),[xi,x2 ),i'",[x-i,xn]1 (3.1.1)

where
a =x 0 < x < X, = b (3.1.2)

and to define the projection operator of linear interpolation, for the partition defined by
equation (3.1.1) by tile rule,

Pf(X) = fAxi.1) (j'j)X + f (Xi) XiI(3.1.3)(Xi -- Xi_1 ) ( -i- X,-]_

if x belongs to the subinterval from xi-I to xi and we note that if this is the case then
since

(Pf)(xi-G ) = f(xi..1)" 1 + 0 (3.1.4)

aiId since
(Pf)(xi) = 0+ f(xi)- 1 (3.1.5)

it follows from equations (3.1.3), (3.1.4), and (3.1.5) that

P 2f = Pf (3.1.6)

Another simphl example is Fourier series or an eigenfuiction expansion in the spatial
variables. Suppose that V is a set of functions defined on R" which are square integrable
with respect to Lebesgue measure v multiplied by a positive function p and valued in a
Hilbert space X with norm Ix with two measurable and square integrable functions f
and( g being equivalent on an open set,

Q2 C R", (3.1.7)
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if and only if

j( (f .- 9)(--) Q) p(x)dv(x) = 0 (3.1.8)

and where the square integrability with respect to the ordinary Lebesgue measure multi-
plied by p means that

,,(I f(x)I' ) p(x)dv(x) < • (3.1.9)

We say that two Hilbert space valued function., f and g are orthogonal if and only if

]f(x).g(x)}p(x)dv(x) =0 (3.1.10)

where
(f(x),g(x))x = f(x).g(x) (3.1.11)

is the inner product of the Hilbert space elements f(x) and g(x) so that the square of the
norm of the function f is

IfIx = fj {f(x)f(x)) p(x)dv(x) (3.1.12)

If
F = { E,: i1E} (3.1.13)

is a finite set of pairwise orthogonal functions in the space V of functions from fn into the
Hilbert space X, then

J W f f• 4(y). #1(y)p(y)dv(y) j O,(x) (3.1.14)py~iE) NQ Oiy -T• O,(y)p(y)dv(y)1

The projection operator defined by equation (3.1.14) yields a generalized Fourier series
approximation of functions; which is the basis of Mie like solutions of electromagnetic
problems.

The next approximation scheme that is often used in electromagnetic analysis is the
pulse basis function method. The pulse basis function method has been used by Guru
and Chici [22], Hagmann and Gandhi [23], Hagmann and Levine [25], and Livesay and
Chen [36] to predict the results of electromagnetic radiation with complex structures by
decomposing the body into cells within each of which the induc-d electric vector is assumed
to be a constant and charge densities are also assumed to be piecewise constant. The pulse
basis function method makes use of the concept of the partition of an open set Q of R'.

We have defined for each x in R" and each positive number r > 0 the set

B(x, ') =-- {yCR: I x - y I < r) (3.1.15)

to be the ball of radius 7 centered at x. We let Q be an open set in R' whose closure is
bounded.
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Definition 3.1 A partition of R is a set P(Qt) of pairs (V1, xi) where iEI and the ball,
B(xi,r) is contained in Vi for some positive number r,

Uvi= (3.1.16)
iET

and
An(Vi fnVk) = 0 (j 5 k) (3.1.17)

whenever (V,,xi) and (Vj,xj) are distinct members of the partition, P(Q) and Aun is the
standard Lebesgue measure on Rn where we let

Pi = {V,: (V,,x,)E,(Q) for some XiEVi} (3.1.18)

and we define the characteristic functions,

E1 X V,
xv,(x) = { 0 x is not a member of Vi (3.1.19)

to be the characteristic functions or pulse functions associated with the sets V, in ,(fl)l.
The sets Vi are called cells in a cellular decomposition of Q.

Next we define the projection operators associated with this partition of an open set
in Euclidean n dimensional space.

Definition 3.2 We define the projection operator P associated with the partition,

P(Qt) = {(Vi,xi) : xiEVi , iCI, Vi C Q} (3.1.20)

by the rule,
Pf (X) = [XV, (x)" f (xi)] (3.1-21)

V.Er(Q)I

for all functions,
f : Qt--+ C" (3.1.22)

where C- denote.s complex m dimensional space.

We prove the following.

Proposition 3.1 If F(Q1, C'") is any topological vector space of functions from f2 into C m

which includes all functions of the form,

x -- Xv(X)ff (3.1.23)

where
V E P(R), (3.1.24)

and
ii E ct  (3.1.25)

then the mapping P defined by equation (3.1.21) is an endomorphism of this topological
vector space which satisfieq

PP = P (3.1.26)
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3.2 The Standard but Nonoptimal Discretization

Kun Mu Chen meticulously analyzed the electric field volume integral equation in
the work he directed in ([36]) and correctly formulated the electric field volume integral
equation for a nonmagnetic body as,

(E - E')(p, w) c ( o) - ia/w)(pq). E(q)dv(q)-(3.2.1)

where

( (2) rad(rad) exp(ikoIp-q ) (3.2.2)

+ grad()d) 47r I p - q I

What is done in practice is to apply the projection operator to the a priori unknown
field J that appears under the integral and to also apply it also to both sides of the integral
equation (3.2.1) to obtain the approximate equation

i _ 2 ( C) --
(P(E P jo) - ia/ P'G(x, y). (PYE)dv(y) (3.2.3)

where G is defined by equation (3.2.2). The so called method of moments was developed
in the early 1900s by mathematicians and is simply the weak topology approximation; as
currently applicd it is an attempt to do a better job of getting a more acceptable solution of
the clearly nonoptimal approximation represented by equation (3.2.3). With the method
of moments one obtains 3N equations for the 3N unknonws representing the electric vector
in the N cells into which the scattering body S2 is decomposed by simply multiplying both
sides of equation (3.2.3) by a. function of x, often the characteristic function of the cell Vi,
where i ranges from 1 to N, and integrating both sides of the new equation with respect
to X

4 Exact Solutions of Integral Equations

We show in this section a method of creating a computerizable approximate to the
original infinite rank integral equation. After multiplying all terms of the integral equation
by the same invertible niatrix, if necessary, we can reduce the coupled E and HY integral
equation to one of the form described in the following section.

4.1 Machine Precision in Integral Equation Methods

We show in this section how to correct our errors in an integral equation method, so
that we can obtain, by doing more processing but not using excessive memory, an answer
whose precision is close to that of the particular computing machine being used. Letting
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f be a vector valued function defined on an open set f2 of R' and having values belonging
to a Banrach space, X, which represents the set of values of the electric and magnetic field
vector within the scattering body and having enough regularity that boundary values are
defined. Suppose that the functions f that we consider all satisfy the condition,

f E 6(f(, X), (4.1.1)

that they belong to a Banach space of functions from Q2 into X. We further suppose that
we define a projection operator,

P:C((,tX) -4 ((Q,X) (4.1.2)

We let B(X) denote a Banach space of operators mapping X into itself and let K be a
function,

K : Q x Q -* B(X) (4.1.3)

which in practice will represent the integral operator acting on the values of the electric
and magnetic field vectors in the interior and on the surface of the scattering body. One
way this can be handled is to assume enough regularity in the space of functions, 8(fl, X)
in which we are seeking the solution (and in the space of approximations within which
we are attempting to find a solution that is reasonably close to actual solution), that the
required boundary values are defined. Related to this basic projection operator, which
may be defined in one of the ways described in the previous section, or in other ways, we
define the operator Qr on functions from Q2 into X by the rule,

P J K(x, y)(Pf)(y)dv(y) 4= Q-K(x, y)(Pf)(y)dv(y) (4.1.4)

We can reduce our original problem to that of solving an integral equation of the form,

f(x) - g(x) -= ATf(x) (4.1.5)

where
Tf(x) - JK(x,y)f(y)dv(y) (4.1.6)

and f may represent a two tuple consisting of the electric and magnetic vectors and g rep-
resents the result of applying an invertible linear transformation two a two tuple consisting
of the electric and magnetic vectors of the incoming radiation. We define the operator L
by the rule

L = PTPf(x) (4.1.7)

where P is a projection operator onto a space of approximates, and define the correction
operator N by the rule,

Ngf(x) = Tf(x) - Lf(x) (4.1.8)

Normally we require that P is a good enough approximator that solving the equation (3.2.3)
will give us a satisfactory solution. However, with exact finite rank integral equation theory
we need only assume that P is good enough so that if N is defined by (4.1.8) that then
the operator norm inequality,

A 11 N In A j II (P - I)N k0} < 1 (4.1.9)
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Thus, it follows that
T = L + N (4.1.10)

The usual approximate integral equation has the form

f. = Pg = APTf, (4.1.11)

where f, satisfies the condition,

f. E P(,6(fS,X)), (4.1.12)

What is usually done is to assume that f, is close enough to f to accurately represent the
solution of the original infinite rank integral equation (4.1.5). We can, if inequality (4.1.9)
is satisfied, define the bounded linear operator

n

GA ZAk-INk (4.1.13)
k=1

so that it will follow that since formally and in fact,

(I-AN),(I+AN+A2 N 2 +' )f = f (4.1.14)

that by combining equations (4.1.i3) and (4.1.14) that

(I - AN)(I + AGA)f = f (4.1.15)

in view of the the geometric series relationship and the identity

(I + AGA) = (I + AN + A2N 2 +...) (4.1.16)

for all functions f satisfying the relationship (4.1.1). Thus, we can in view of the relation-
ship (4.1.10) deduce that

AT = AN + AL (4.1.17)

Equation (4.1.17) then means that we can express the original integral equation (4.1.5) in
the form

f = g + ANf + ALf (4.1.18)

Rearranging terms in equation (4.1.18) we sce that

(I - AN)f = g + ALf (4.1.19)

Combining equations (4.1.19) and (4.1.15) and equation (4.1.13) we deduce that

f = g + ALf 4- AGA(y 4 ALf +) (4.1.20)

Now if we simply combine equation (4.1.20) and equation (4.1.18) we deduce that

ANf = AGA(g + ALf) (4.1.21)
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We would now like to apply the projection operator P to both sides of equation (4.1.20)
making use of the fact that P is idempotent, equalling its square, and equation (4.1.7)

PL-=- L (4.1.22)

to obtain the relation
Pf = Pg + ALfAP(G\(g + ALf) (4.1.23)

Substituting equation (4.1.21) into equation (4.1.23) we see that

Pf = Pg + ALf + APNf (4.1.24)

Thus, if we define
L(K,p) (4.1.25)

then in view of equation (4.1.7) and (4.1.25) we see that

Lf = L(K,.p)Pf (4.1.26)-

Now we see that equations (4.1.24) and (4.1.26) imply that

Pf = Pg + APL(KY.p)Pf + APNf (4.1.27)

While equation (4.1.27) is not a finite rank integral equation, it suggests that an approxi-
mate finite rank integral equation

Pf" = Pg + APL(K~p)Pfa 4 \PNPfa (4.1.28)

might give -, better approximation to the solution than the traditional approximation given
by equation (4.1.11). We shall go much farther than this, however, znd redv,'e the equation
(4.1.24) to a true finite rank integral equation whose solution will be the projection Pf of
tile exact solution f of the original infinite rank integral equation (4.1.5) onto the space
of approximates. This will permit us to achieve our ultimate objective of representing the
solution f exactly in terms of Pf and the stimulating fields g by an exact formula. Going
back to equation (4.1.19) and making use of equation (4.1.14) we obtain

f Y [(AN)' (9 + ALf)] (4-1.29)
k=O

Operating on both sides of equation (4.1.29) with N and then applying AP to both sides
of this equation, we see that

APN f > [(AN)' (g ± ALf)] (4.1.30)
k=o

Nov., simply substituting equation (4.1.30) into equailon (4.1.27) we get the finite rank
integral equation,

Pf = Pg +
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\PL(,F,,p)PJ + APN [fAN)k (, + AL(jI7.p)Pf-)] (4.1.31

Now collectfilg ternis iii equation (4.1.31) involving Pf and those involving g and Pg we
ob~tainl the relationship)

P1 = Pg +±APN EZ(AN,)k] +

AP L(~,+ IV [E(AN kj ALQKP)) Pf (4.1.32)

Our first objective is now achieved since ion (4.1.32) is a truly fi-nite rank integral
equatiton iiu the unknown ineibe-r Pf of a finite dimensional vector space. The computer
progranm giving it solution of equation (4.1.32) would provide us with coefficients of the basis
Voc(tors of this finite diniensioixal vector space that are needed to represent the solution Pf
of equation (4.1.32). In other words, the linear combiration of basis vectors of the vector
spare- V'hich1 if thlt image of the :i~rojecrtor P is the exact value, .Pf, of the projection of the
exact value of the soluition, f. of the original infinite rank integral equation, (4.1.5). From
this, point (II we assumei that Pf is known.

1Fo finish off thi's section we use our exactly de-terynixxed value of Pf that. was obtained
hy so'lving cquattiou (4.1.32) under the assumptioni that I1-- A'L is invertible on the image of
thec projectionl operator P, where L is defined by equation (4.1.7). We begir'. by subtracting

61' Lg,1: of c(pita(.0114 (4.1.18) andl (4.1.24) obutinilig the relationhi, 1,

(f -- Pf ) =- (9 - Py) + A(I -P)Nf (4.1.33)

CoIlI'rtingj the teryms involving f iin e.quation (4.1.33) and moving the known function Pf
ovor o:1 the light Sifle, %WC obtainl the equationl,

[I - A(I - PiN] f (q-Pq + Pf) (4.1.34)

'I'hw Mt-iqiiaits' (4.'j 9) d.luii 4enald(.s, ts to invert the ope)rator a-.ixxg onl the f ini the left

ý'II (If CP Idi.ioii 4. I .34 lb-i W ;ipldviig tn p geoiletric sf;enISOeso r;0or

i A D(1I -- P)NAY (4.1.35)

ti 1101Iihlis ()f cIqII;It ul (.1 1 3.1 ). TIII hu,(IWesove c la.(loni~~ (4.1,32) fox Pf we, canj

rI'1'ir:' hyl ~ Iv lxh4vsýIng t hc OIX;I( t  V;11114- of f 'IS

N \~11J) NY P.( L' 1¾ f )(4. 1.36)

wr *Aiw d I pI.I ip11"a t;1(

c~g i-c II :(11, 1) '(4 111111.1 ;WC 118CY



5 Layered Materials

We have formulated some one dimensional scattering problems associated with mag-
netic materials, and solutions obtained from the differential equation formulations have
been substituted into the integral equations and have been shown to satisfy them exactly.
For magnetic materials, a single integral equation was obtained and the significance of
surface values of the derivative of the electric vector were shown to be important. For
higher order splines all terms arising in a matrix representation of the integral equation
formulation of the problem, and all iterates of the integrals could be computed exactly.
Using distribution theory concepts, we have combined the electric and magnetic field in-
tegral equations for the case of a plane wave that is incident normally on the magnetic
slab.

5.1 Magnetic Slab Integral Equation

Magnetic materials, particularly lossy ferromganctic fibers or carbon fibers with a fer-
romagnetic coating should have a very strong tendency to extinguish microwaves. It is
therefore important to b~e able to treat the interaction of radiation with magnetic materi-
als. What is described here is an exact solution of the problem of describing the interaction
of radiation with a magnetic slab. Distribution theory is actually needed to formulate and
solve the integral equation for a. magnetic slab.

We consider in this section radiation normally incident on a magnetic slab, and assume
that the electric vector of the incident radiation has the form

E' = Eocx.p(-ikoz), (5.1.1)

so that the Imagnietic Vector of the incident radiation defined by tiw Maxwell eqtation,

-iwluH' = curl(E')

- ik,,Eu(.rp(--ikoz),, (5.1.2

i•. ,fit,.r ,liviid i Igtbth :hieid.. ,,f c,1iii.tion (5.1.2) by -iw,op is give•n by

A-, E,
= - - -- / . l t - k ,z , ,/ . .

W i1111i1 tIwl.i,,gii.tl, , v~i.i' thI,- p t.'l 1ittivitV 0", t h, ' per Ixeali;Ity I'. ; IiI th, cond ,i -
Si'it Vi (7 a It. (ig'i,, tc .a.l -,I ,s iII ('alti .,iari c,',,, lIl ACtC.s. tIh firist %Mfi XWV.I V(I11t e l iths tlI.

I ,e .', 4 C)..E 4'.7. 1".l.,I)
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However, if the stimulating electric vector has only an x component, then the same is true
of the reflected, induced, and transmitted radiation, and, thus, we may assume that within
the slab that this is also true. Hence, we assume that within the slab,

= g(z)cxp(-iwt)e- = E(5.1.5)

Since then

curl(E) = - E- = - iw•y,1I 1  (5.1.6)

we conclude that

11/ = (5.1.7)wik Oz

Using (3.4) we conclude that

curl(H) = -Z Hy (5.1.8)

which implies that
curl(H) =

LkC/• )0zws v 0z2 ]

= ( + oa)E. (5.1.9)

Thus, multiplying all terms of this last equation by iwp. we see that

a2 E. tl4')(--) M.,
az 2  y(z) Oz

= (-w 2ILyf + iwAO/a,)E1  (5.1.10)

We are, therefore, seeking an ifpulA)l rc sponse of the equation,

-2 E± , "2• "1 -r a 1 1 o eo E .-
0z2

/I4') OE

NV:(- iltro•di(', the vatriahh.e

/ V F, - I,,.i/1, 7 - '.4 ou (5.1.12)

w Id e '/ w'NI ag-ie( th t' 1, aw 11(] a takc. th i. fr(. ' Spa)c'' values )uitsidl' the ~ 1shl . alld ;ass1u1ll
that E - E' as lhv d fo)'l,

E E' T TE.f xr, i( - kI 1)z - L
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141 •)(i) aE•.
+(b] 7' exp(-iko I z - j) I di (5.1.13)

where we write the global magnetic permeability via the relationship

(Y(z) - Y(z - L))(A4, - yo) + /Io (5.1.14)

where

Y(z) 1 if Z > 0 (5.1.15)Y~z)=0 if Z<O0

is the Heaviside function and
Y( 1)(z) = 6(z) (5.1.16)

is the Dirac delta function and where we think of p as the permeability at any point and
think of / as the value of permeability inside the slab. Thus, with this definition and
recognizing the tangential component of the magnetic field as being proportional to the
reciprocal of the the magnetic permeability times the derivative of the electric vector with
respect to z in view of the relationship

11/= i O9E•

WJgy Oz

and seek a representation of the form,

E, - E'= c rE.exp(--iko I z - i I di
C,

+b fo/ )(z)OEexp(_ik° I z - i I)di

{b1-P E C~x (koz) xp-orz <
- (L)cx(IkOz)exp(-IkL) (5.1.17)

\/I(L)) az-
Theoremn 5.1 If E,. satisfies (5.1.17,) and E,. is twice continuously at points i',37.sde and
outside tht slab. then (a) outside the slab E - E' has the representation

Cecxp(-ikoz) for < > ( 8

whereC- (' i. the reflection coefzicient, and C' i. the coeffiricnt defining the transmitted
radiatzon (r) if o. function E,. that is differentiable inside and oittside the ilab satisfies the
integral cquiation, then,. E, is continuous on the entire real line, and fartherlflort, if H - H'
iL dCttcrn1ited from (5.1. 17) 'via tht. relationship

H-- rEI.F.rp(-ik,'( - 5
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+ r TExr xp(-iko( - z)di

+ 2 1 Z ----e~xp(-ikLo(z - )d

+ 2wpo JL 8i &

+ (0))-E-0 (O)exp(-ikoz)

2w-to i (0) ) c9z

+ 1 ---- -E(L)exp(ikoz)exp(-ikoL) (5.1.19)

and H - H: is continuous across the boundaries of the magnetic slab. Furthermore, the
classical solutions of the integral equation (5.1.17) are solutions of Maxwell's equations
provided that

b (5.1.20)
2k0

and i
2= (5.1.21)

Proof. Equations (5.1.20) and (5.1.21), which represent the evaluation of the parame-

ters in the integral equation (5.1.17) follows by substituting (5.1.17) into Maxwell's equa-
tions. We begin by computing the first and second partial derivatives of E, with respect to
z fronm the integral equations and we then use these expressions to show that (5.1.20) and

(5.1.21) arc needed in order that Maxwell's equations be satisfied. We find, upon breaking
up the integral from 0 to L into the integral from 0 to z plus the integral from z to L and
differentiating, that
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OE - aE' = c-E~, - CTE,

c(-iko) j rE.,exp(-iko(z - di

c(iko) IL TrEcxp(-iko(i - di

b/iy JI- --b11 L(- ýE- jj=z +

/1 i().z OE.

Hko~b y Z(-iko( -. id

+(iko~b yexp(-iko(i - z)di

I-. pyi io
+(-iko)b 1- (O) 9-"(O)exp(-ikoz)

-(iko)b - 110 !!E-(~x~kzep-kL (5.1.22)

We now take the derivative of both sides of this last equation with respect to z obtaining

a2E 92 E'
(92 Z2

LL
- (i ko)C7E, + c(iko) 2 ]I rE.,exp(-iko(i-z))di +

lz=, +(-iko )2 bjiO()3J-)d+

fsY(4) dz fty(Z 0O;

ji'(i) aEL/IV1z-) ~

-(-Iko ) 2 b (i - E;) (O)exp(-ikoz)

-(iko)
2b (1 OE,~) c~(L)(:xp(IkOz)cxp(-ikOL) (..?

We ow miake 'ise of the fart that

-4- E') - k2 {j E(-p-' I z d-'
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+b (1 -- ---O) ýE-O~exp-k

io OE• .Oz

"h1- 1 -E~(L)cx(ikz)cx(-.*L)\ (5.1.24)
P,(L)) azJ

and substitute it into our equation for the difference between the second partial deriva-
tives of the stimulated and incident electric field vectors. Rewriting (5.1.23) to make this
substitution transparent we see that

O2E a
2E'

-(ko)" {cj rE~exp(-iko(z -

+ c rE-exp(-iko(i - z))d5

* b Ioz 't(y (i) iEepk( )di

f L y(1)(-;) OEX
+ b ,( exp(-iko(- z)di

+ b ( 1-)z(O)xp(-ikOz)

-b (i - 1'- E- (L)exp(ikO~z)exp( -ikoL)}
11,_i)) )Oz('( E (..

- 2(iko)cTrE, + 2(--o c.E (5.1.25)
/ly(Z) O9z

Simplifying the above equation we find that

Y2 E a2 E'Oz• _ ;_ _ -k2(E , - E.,
_5_ 2 Z2~

-2cikoTE - 2 j4'b ax (5.1.26)

- zb /I.y(z) Oz

Wc next simplify this equation by making use of the fact that the electric vector, E.,
of the inci(dent radiation satisfie.s the free slpacC Helmholtz equation

0' E'

ý--2 + k2E' = 0 (5.1.27)

Substituting this into the Ire('vious equation we find that

02 E,.
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1t41)(z) aE.,(..8
- 2cikorE., - 2ikob ' ((z)(.OE2/-'ý(Z) 495..98

We now need to select c aiid b in the above equation so that the equation is identical

to equation (5.1.11) where T- is given by

-r -- W2 1VEX -- iWityo"X - W 2 
o IO

= ck2 
- = k 2 

- W 2 •oE (5.1.29)

We see that we need
- 2ikob = 1 (5.1.30)

and
2ikoc = 1 (5.1.31)

In order to define the operations we note here that, while it is true that we cannot in
general multiply distributions, certain orders of distributions can act upon spaces larger
than the infinitely differentiable functions. For example, order 0 distributions can act on
the continuous functions with compact support, and order one distributions can act on the
differentiable functions with compact support, et cetera which will enable us to define the
product of an order 0 distribution u and a continuous function f by the rule,

(uf,¢) = (u,f¢) (5.1.32)

where 0 is a test function. However, the function uf is not a general distribution, but is
a continous linear functional on the space of continous functions with compact support.
The integral equation is then derived by recognizing that in view of equation (5.1.9) that

W E .+ k 2E . =

- iw4 1 )(z)Hu - rE 1  (5.1.33)

By convolving the fundamental solution of the left side of this equation with the right
side we obtain the integral equation. Since, as we have shown ([9], [33]), every solution
of the integral equation is a solution of Maxwell's equations and the solutions of the inte-
gral e(quation satisfy automatically the Silver Mueller radiation conditions and tangential
components of the electric and magnetic vectors are automatically continuous across the
boundaries, the solution of the integral equation is necessarily the solution of Maxwell's
equations. Since the solution to this electromagnetic interaction problem is unique, the
fuirction space un1(der consideration is the space of functions which are, along with their
derivatives, continuous up to the boundaries. When the slab is nonmagnetic, theni unique-
ness may lbe provwn in the function space ([33], pp 69-130) consisting of all vector valued
functions 0 such that

j I ( 1 2, + I curl() dv < oc (5.1.34)
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6 Discretization of an Integral Equation

To approximate the integral equations on a computer with a finite memory, we divide
the slab with which the radiation is interacting into thin wafers separated by planes whose
normals are perpendicular to the planes defining the boundaries of the slab.

6.1 Piecewise Linear Approximation

We consider approximate integral ?quations of the form

E(z) - E'(z)=

f {A, + B,(y - z;)} K(z, y)dy +

f BL (z,y)dy +

j= - - 1

F(z)B, - G(z)BN (6.1.1)

where we suppose that the numbers zj are defined by

0 = zo < zI < -. < Zj-, < Zj < ... < ZN -- L (6.1.2)

and that within the subinterval (zj- 1 , zj), the electric vector is approximated by

f = (Aj + Bj(z - z'))•, (6.1.3)

where the constants A. and Bj contain the exp(iwt) time dependence. We have a separate
equation for each value of z. At this stage there are several methods to obtain a matrix
equation from this continuum of approximate equations. One obvious method is point
matching by selecting two points (2j I and (, in the sibinterval [zj,, ,.j]. This gives us a.
system of 2N e(quations in 2N unknowns, which have the form

E(C•t-,+,) - E'((21-q+l)

At + Bt(( 2,-1.f - z;) - E:(•2-q+,) =

21 A, + B,(y - z;)}I(( 2,_-+1 ,y)dy +

I fV L((2 rq+,,y)dy +

F((2•-..q4 l )BI -- G(( 2t-q+l )BN (6.1.4
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Defining
1 j --- g (6.1.5)

We now use the delta function notation to rewrite the previous equation to make it look
like a matrix equation. We find that

N

E b(j,t) {Aj + Bj((21-9 +1 - z;)}
j=l

j=l -!j

Bj (y - z;)K((21-q+i, y)dy} -

N
E6(j.,llBjF((21-q+l) +

N

Z 6(jl)BjG( •_-q+l) = Ei(t(21q+l) (6.1.6)
3=1

We now represent this last equation in the matrix form
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A,
B, E((~2
A2  E(3
B2  E'((4)

T =T - (6.1.7)

AN E'((2N- I

BN E'((2N)

We now describe the entries of the matrix T1. Note that if we define

62.-1+P{ A1i P =0 (6.1.8)B, p=l1

that then the system of equations may be expressed more compactly in the form

N (±Tf+.J1P2~.P I

where q,, 10, 1). If p = 0, then for each qE 10, 11 we have

T(21-1+q,2.,-l+p) = 6(j,l) - J'.h((2t 91-,+,y)dy (6.1.10)

Oin the other hand if p = 1, then again for each qc {0, 1) we have

T(2t...+q,2j-1 +p) = '5~y,e1((Gt-q+i -Z)

-z K(( 21-q+l, y)dy - 2L((21q+l, y)dy

- C(,,)F((2t-,+l) + b(j,,)G((&.q+l) (6.1.11)

TIlereforv, the solution of the matrix equation (6.1.7)

Tý = f'(6.1.12)

thenl giVes l)arAtIi(ters Miia (l)proxminat( rep~r-sent.dttioii of the electric vector of the indllccd
ce(c tr1owixngnct n fiv 14

7 Surface Integral Equation Methods

Ili th hisSe rt ioU wc s11i11.1lo~ 511(Wo iillii ~th ( vaeWhere the Irrit(l1ate(1structi 1lr' conIsists of

ho()ilogiie( ll regitilis whic)) arIe di'hijiliit cclý dy(iff'c'oillorlhiismis of the intecrior of sl)iiervS ili
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three dimensional space to represent the solution of the scattering problem as the solution
of two combined field integral equations with integral operators formed from from the
Green's functions defined on opposite sides of the separating surfaces. The surface integral
equation methods reduce the computational complexity in the sense that they require
discretization electric and magnetic fields defined on a surface rather than on a region of
three dimensional space.

7.1 Combined Field Integral Equations

Consider a set QŽ in R3 with boundary surface 49! on which are induced electric and
magnetic surface currents ,j and Mj. If we have a simple N + 1 region problem, where we
have N inside and a region outside all N bounded homogenous aerosol particles corresponds
to the region index j being equal to 1 and the region inside corresponds to j values ranging
from 2 to N + 1, then if the propagation constant k, in region J is defined also by a function
k,, naturally defined on a Riemann surface as the square root of,

k2 = W2 - iwla (7.1.1)

For a Debye medium (Daniel, [17]) the branch cuts are along the imaginary w axis. For a
Lorentz medium particle (Brillouin, [4], [55]) the branch cuts are in the upper half of the
complex w plane parallel to the real axis. where ,i, e, and a are functions of frequency
that assure causality and that the radiation does not travel faster than the speed of light
in vacuum. There are two Hehnholtz equations, one for the interior of the particle and the
other for the exterior, defined by

(A + k2)G, = 47rb (7.1.2)

where G, is the temparate, rotationally invariant, fundamental solution ([28]) of the
Helmholtz operator. We let

J= J = J (7.1.3)

and
M 24 -- -M 1 (7.1.4)

wher(, we assume that the surface S11,2) separates region 1 and region 2. We geieializc
e(quations (7.1.3) and (7.1.4) inductively by saying that for any surface S0 .,) separating
region j from region .; where

we have
Jj <1 ) 7..

i11(l

A ,If = 24 -2- (7.1.7)

We (lefihl
S(.)is a Separ;at ilg sli1{t(c(ý (7.1.8)

92

-- -•......... ...- - - - - --.. . .... _----_ "- --t-' - - ---------- .. ... .. . . ' .... .... .... . ............- -



where j is less than 3. We get a single coupled, combined field integral equation which
describes the interaction of radiation with the conglomerate aerosol particle or cluster given
by

{(4)r) s ( J (p,' G(r,) + " Gt(r, F))da(ý)

+ i -grad(div, + da(d)} +

(1) curt (L; / ,(f). (G;(r,) + G; (r,F)) da(i)) } (7.1.9)

In addition to equation (7.1.9) we need equation involving the magnetic vector Hi" of the
stimulating electromagnetic field which is given by

rlXfl"' it' X (.f{~)L3  [(i) G, (r,i~ + E2 -G. (r, i)) da(iý)

+ y )grad{fs J(dv M) [(r, ý + da(G) +

-curl fJQ) - (G,(r,iý) + G,(r, )da(l)j (7.1.10)47r ( ,s .;) , )

Once the coupled combined field system (7.1.9) and (7.1.10) is solved for f and -f, the
surface electric and magnetic currents respectively and we define the surface electric charge
density by ([20], 1) 7)

and the surface magnetic charge density

p".(i) ± [di,. M(f)] (7.1.12)

where dhi., is the surfak'ce divergence. Now for each region index j we define

,(j) = {3: (j,J) E 2} (7.1.13)

wher, I is the set of all i1(li('cs of s'parating surfa,-cs (defined by (7.1.8). We now m.ed to
I)v able to e'xp~ress the, electric and manetic fields inside and outside the scattering bo(y.
WC first d(efint liht, x ector potentials A, and K by the rules, ([20] [37])

A [4j Jr[-r. "fG,(ri.hda(ý)] (7.1.14)
,E..7(,) ý4 r

47,- JA(. I "
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The scalar potentials are defined in terms of the electric charge density (7.1.11) and mag-
rietic charge density (7.1.12) by the rules,

4 r
~'~.Ji) J (i)Gi'r, ý)da(vý)] (7.1.16)

We now can define the electric and magnetic vectors inside the region jin terms of these
potentials (7.1.14), (7.1.1~5), (7.1.16), and (7.1.17) by the rules,

= - JA(r) -grad(4tj(r) + I icurl(fj)(r) (7.1.1H)

an ij iwfj(r) -grad('F,(r) +I 1 curl(,A,)(r) (7.1.19)

Similar equations apply outside the body, by there the fields represented are the differences
E~and fl- between the total elvcctriu aid mnagnetic vectors and the electric vector Zinc and

the miagnietic vector H"in o-, the incoming wave that is providing the stirmulation. Thus
([20]) we see that outside the body,

4,4- A(7') -grad(ýP 1 (r) +- curl(F1 )(r) (7. 1.23

and

H'~ - i.F 1 (r) - rad('I'1 (r) +-- curl(A1 )(r) (..1
/11

'I'llesc (peuations- genetralize the forilnulatioii of Glisson (Q20]) to a three diniiensiorial struic-
ture whose region)1s of hoinogeneity are diffeon-orphiisins of the hiterior of the sphecre or a
torus- in W~. If the scat tering structatre is not a body of revolution, then the region maiy be
it diffeornorph of an N handled sphere.

8 Potential Benefits

The fac(t thait the linplienleni titoit of t ]wsc Vidvas wouild provide ai inachune JprecisiOnl
integral ,quittion formiulation of -.lef-t i( )iagnietic lilt erac tnor I robleIlis nl(,IcaS that. 1rsinig
Citr(frlly de~sigmn d sournces onle could devel( p ;Inan of focri sing mlicrowaves, on at canicer
tillin)! wit hii the( h11U1411i body, andr (lest roy tlie tun1111)01b raisilig its fI .npl)ratur(e 4 degrees
Xv'itihoili 1 hi iui~gi tw hi(' ll (ai )V lit Iill Ii 55-,lU. Thi: wol1u 1 1-Iiig tueV e{ISI. of hnI'ii('5 Une

trf"Itijielt (lovni to thme lelthe work-ingi 1)('!501L

Tl* fiwt thIat this, probl e 1'iii cal bt so lved( for am s;ot ropl)c st-i- ictutres llein 'am that wve hav(
ca iritlir] iic'ills ( )f o]nt iuul h''gnilig cin ryst ai t eluvIsionl sets .11id vid''.o (lisplly".
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thereby making the home environment less hazardous for inner city children who spend so
much time with television and those who work with video display monitors. Thl repro-
granminig of these new safer devices will stimulate the economy by providing many new
jobs.

The successful determination of an order N 2+t matrix inversion algorithm, will assist us
in the development of dynamical system models kinetic type models of world peace, which
will include models that provide this nation and other nations with resource management
plans for economic and ecological stability and medical care and food distribution as well
as optimal running of coorporations and the design of very large systems. Also, the key
part of the globally convergent homotopy method, with its myriad of design application
potentials such the design of a magnet and irradiation configuration that would increase
the absorption efficiency of a plasma in a fusion reactor by a factor of a billion or so, is
the inversion of matrices.

The implementation of the explosion niodels would give us a way of tracking the re-
suits of effluent from power plants and show the efficacy or safety flaws in the design of
installations for burning toxic materials.
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ABSTRACT

Can a very limited number (5-20) of polarized light scattering measurements from spherical dro-
plets be used to distinguish between a uniform droplet and one with a shell-like structure
(described by only two indices of refraction)? Can it be done if the shell inner radius is 9Q0% of
the outer radius, and if the uniform droplets have an index of 1.33? What if the measurements
have errors of 5% or 10%? Can it be done if the droplet radii are permitted to range from. Il.t to
10g. Conversely, what measurement information (with what accuracy) is needed to make deci-
sions within a given range of parameters? How are these answers affected by limitations of
computer time and available disk space?

1. Redefinition of the Problem

If one starts with an enormous permitted range of parameters, a limited number of meas-
urements with limited accuracy, and finite computational strength, one will be uable to solve
the decision problem. We have therefore :hosen to reverse the question. With a given amount
of measurement information, e.g. five intensities, over what range of permitted parameters will a
decision be possible?

During this initial phase. the amount of computation is modest. Howeve-, a shell is, in
full generality, a point in a four parameter space (two radii and two indices). We have found that
each added parameter multiplies both the computation time, and the required storage by a factor
of 100, We start, however, by assuming that we have an arbitrary amount of CPU time avail-
able, and ask if a solution can be obtained at all.

The problem can be rephrased in a useful way by asking with a given amount of
resources (number of measurements and computer time) over what range of parameters is such a
discrimination possible?

2. Why is the Problem So Hard?

Although our problem is one of detection, namely the choice of sphere or shell, this is
preceded by an estimation problem: Assuming that the scatterer is a sphere, what is the best
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parameter set rl=R,m that fits the observed data? Here R is the sphere radius, and m is the index

of refraction of the sphere.

Then, one must assume that the scatterer is a shell described by the four parameter set:

rjýRout,Rin-msheUme. Again, estimate the point rl, now in a four parameter space that best

fits the data. Finally, one must ask is the fit to the sphere sufficiently better than to the shell (or

vice-versa) that we can make a clear decision as to the nature of the scatterer.

The Estimation Problem

In our preliminary work, a least squares estimation procedure is used. We calculate the

(theoretical) scattering intensities J( 01 ,r1 k) over the permissible space in i". For k=l this is the

two dimensional space of the radius R, and index m, of a sphere. For k=2, r7 ranges over the

permissible values in the four dimensional space Rout,rnout,Rin,min, where the shell is bounded

by the inner and outer radii, the core is bounded by the inner radius, and mout='nsbe11 and

Min-- =fre. With I(Gi,rl*) the experimental intensity at angle O and (unknown parameters rl*)

the function
M _

V(11k) = ( O E[(0i,TI*)-I(Oi,nk)]2 ) (1)
i=1

to be minimized over the domain of Ilk. In our simulation, we actually start from a particular

point T" * and then add noise comparable to that in the measurement process (5 or 10%).

To illustrate how difficult the minimization procedure is, we consider the spherical case

and plot the logarithm

F(l1') = lnvOl')

Because our parameter space extends to RA=8 or size parameter of about 50, v(rl) oscillates

rapidly, and over a wide range of amplitudes. The use of the logarithm is needed to make the plot

in Fig. 1 feasible. The difficulty of locating the minimum in the figure is evident.

The Decision Problem

Let us describe the results of performing the minimization procedure by
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Vk--minv(Yil) (3)

where v, describes the best fit using spherical parameters and v2 describes the best fit using shell

parameters. We then found it expedient to introduce a single decision parameter:

R = logjo(vj A2) (4)

By employing Bayesian procedures, or a version of maximum likelihood methods' we arrived at

a decision algorithm, namely a way to compute a parameter R such that R > R implies the choice

of a shell, and the converse implies the choice of a sphere. This parameter will, in general, be

close to zero.

3. Previous results

The first attempt' compared a sphere with known radius of 2.5p1 and an index between

1.33 and 1.55 with a shell of outer radius 2.5jt and inner radius between 1.76 and 2.2g-t. The core

index was assumed to be 1.33 and the shell index 1.55. Both cases have only one free parameter.

and 5 measurements were found sufficient to distinguish between the two cases.

Another case considered was a sphere with index an a shell with indices 1.33 an 1.55.

The radius of the sphere an the outer radius of the shell were assumed identical. The inner radius

was assumed to be .9 of the outer radius of the shell and the latter was assumed to be identical to

that of the uniform sphere. The latter was permitted the wide range from Again 5 measurements

were found adequate for this one parameter case.

Our second attempt 2 was made with a two parameter descnptioji of the sphere and a t,,,,.

parameter description of the shell. This was accomplished by assuming that the outer radius of

the shell was known. The parameters, and the results are shown in Fig. 2.

Because of the third parameter, we felt it necessary to use 12 intensity measurements.

Moreover, an increase of a factor of 100 in computing time was needed. The calculation was

therefore shifted to a Cray.

By precomputing a table of Bessel functions and using interpolation to get the desired
values during a least-square parameter determination, the computation time was reduced from 20

hours on a Cray to 2 hours on a Cray. 2 The small overlap between the two peaks in Fig. 2

demonstrates that the region of indecision is small.
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We then turn to the case of a shell described by two radii and two indices. Another

increase of a factor 100 in CPU time was needed. Calculations initiated by Po Hu attempted to

reduce th,. large CPU time (even on the Cray) by making use of vectorization and dealing with

1,000 urops simultaneously.

The calculations were extended to the case of a four parameter description of the shell by

using only a random sample of points in the four parameter space. 3 The results shown in Figure

3 using 1,000 "'experimental" droplets and 12 measurements on each demonstrate that a deci-

sion is feasible for the parameter ranges shown in the figure.

4. Need for a New Procedure

The procedure of calculating 1,000 droplets simultaneously to take advantage of vectori-

zation on a Cray was useful to test feasibility. It is an unacceptable procedure to use in the field.
There one wishes to compute one drop at a time, and determine whether or not it is a shell. it is

not acceptable to wait for 1,000 droplets before one begins computing.

One of us (ML) then proposed precomputing as much as possible. It does not matter how

long the precomputation takes, as long as the testing of an individual droplet can be done in

nearly real time, by comparing with precomputed data.

What about the limiting case, in which one precomputes everything? Table I shows that

we used about 70 million sample points in the 4 dimensional parameter space of the shell. For

each such point, we need 12 measurements. This information takes a Gigaword of storage. That

is difficult but not prohibitive. But to search such a huge database seems prohibitive.

We then sought a compromise. Can we use a precomputed database to obtain part of the

information about the particular droplet, for example, the permissible range of outer radius? The
final least squares fit on a particular droplet can then be made by doing those Mie scattering cal-

culations only within the permitted ranges.

5. The Cai Procedure

Wei Cal came up with an ingenious way of storing the precalculated data in such a way
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that it is economical of computer space. and is quickly searchable. All points of a fine mesh in
the two or four dimensional parameter space are chosen, and twelve Mie scattering intensities
are computed for each point. However, the intensities (which take a word each) are not

recorded. Instead, the intensity range is divided up into 80 regions each con'esponding to a 10%
range of intensities. One file is associated with each of these intensity ranges. At the same time.

see Table 1, the parameter space of 69,120,000 points is divided up into 960,000 cells, each of
which contains 72 points. Each file will contain 960,000*2 bytes, since each pair of bytes (an
"'address" for one cell) will hold 12 pieces of intensity information in bit form. If any of the 72
points within that cell gives an intensity in the range for file 51, for measurement 3, then the

third bit in the address for that cell in file 51 will be set to 1, otherwise to 0.

Titus 12 pieces of infrmation about 69,120,000 points that would take 829 Megawords

to store, are summarized in 80 files requiring a total of 154 Megabytes (a factor 80 reduction on

a Cray). The price one pays for this, is that the Mie scattering must be recomputed as needed.

For a given set of 12 measurements one can then determine which cells contain possible

fits by searching the above files. Note that we don't store the intensities themselves which
require a word apiece, but only bits that reveal where such inte:-sities may be found. Compati-

bility with all 12 measurements eliminates most cells, leaving only a small fraction. For these
cells, say 1/1000 of the total number, one can perform the Mie scattering calculations and deter-
mine which of the individual points gives the best fit.

The computation of the database takes many hours of Cray CPU time. But that is

irrelevant. The search and minimization over the restricted set of cells can now be perornned in

seconds. And this is the only part that need be performed on an actual test droplet. Our prelim-
inary results show that a factor 1,000 re'Xiction has been made in the vital second stage of the

calculation.

Note that by using a larger number of cells, and a smaller number of points within each
cell, the final minimization will be faster. This trade off, however, requires (1) more disk space

available than the 150 Mbytes we have used, and (2) the time for selecting the perm-issible cells
increases.

We start with a discrete space containing about 70 million points (69,120.0H0), see table

I. When we ask which point in this 4D space gives the best fit to the "measured" data, we often
find an exact match to the starting point. We can't expect the fit to be perfect because noise has

been added to the intensity calculate by Mie scattering to provide the "experimentally
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measured' data.

6. Results of Calculations Using the New Procedure

The rables I and II, separately, indicate how the parameter spaces of 2D and 4D are

divided. Optimization for division into cells and choosing the number of points in each cell is

that the time for selecting permissible cells should nearly equal the time for detailed Mie scatter-

ing calculations. Due to limitation of our hard disk space, in our design the latter is still about 3

times of former. Most of the running time in building a 4D database is expended on the Mie

scattering calculation at all 69,120,000 points in parameter space. It takes 38000 seconds on

CRAY-YMP. This precomputation is done once. Having the database, if a pseudo-experimental

data is given, suppose with a +5% noise, it takes only 10 seconds to search the database to deter-

mine which cells are possible. Then it takes another 28 seconds (on average) to do the detailed

Mie scattering calculation on points inside these possible cells, and to find the best fitting point

in the parameter space. Since only about 1/1000 of cells (on average) are found to be permissi-

ble, a factor of 1000 reduction has been made. With a + 10% noise, about 78 (average) seconds

are needed, since more files need to be searched and more cells are possible. Compared with the

4D case, the running time for the 2D case is negligible, so we can cover the 2D parameter space

with many points.

We found that in most of 4D cases, the best fitting points obtained are exactly the points

we startwd with as pseudo-data. Among 1000 tries, no mismatches were found for +5% noise

case and 8 mismatches for + 10% noise case were found, but at points close to the starting points.

Because of very fine meshes in th'! 2D space, there are many mismatches, but all are near the

starting points. We can assert from above results that, at least for the assigned range of parame-

ters, especially 4< RA<8, inversion could be successful. The reason for this, we think, is that

strong oscillations of intensity with parameters is of benefit for inversion. For very small drops,

inversion may be difficult as shown by Bottiger.4

Fig. 4 and Fig. 5 show the event distribution as a function of log1 o(V1 /v 2 ), separately, for

noise +5% and for noise +10%, with v1 the minimum fitting error for sphere case and v2 the

minimum fitting error for shell case. We see that no crossing appears, 1,3 all decisions (total

4000 tries) for distinguishing a shell or a uniform sphere in our tests are correct. Since we do a

search of possible cells before do a least square fit, it is possible, when the input pseudo-data is
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shell-like (4D), that not a single cell in 2D space is actually possible! This is true for 963 events

among 1000 for noise +5%) and 348 for noise _+10%, as shown on the right side of Fig. 4 and
Fig. 5.. Certain shell data are thus found almost impossible to match with any spherical parame-

ters.

7. Conclusions

The impossible dream of doing the calculation on a portable computer in nearly real time

seems to be within reach. For this stage, it would be desirable to have a fast workstation with an
extra disk of 1 or 2 Gbytes to hold our special database. Such disks are now quite inexpensive

(slightly more than $1,000 per Gbyte. But we also need a fast CPU so that the turnaround time in

testing is reasonable. Further improvement, of another factor of 10 is needed to realize the
dream. Part of this may be achieved by optimizing the code. Part may be achieved by choosing

the most favorable angles at which to make the measurements. See figure 4. Another part may
come from the increased speed of today's (and tomorrow's) workstation. Can we guarantee suc-
cess? Of course not. But the success, so far, suggests that an attempt at further improvements is

worthwhile.
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TABLE 1. INVERSION FOR SHELL-LIKE DROP (4D)

range divisions cells points

inner-index 1.33-1.55 40 20 2

outer-index 1.6-1.8 40 20 2

in/out radius 0.7-0.9 90 30 3

, outer radius 4.8 (RA) 480 80 6

Totals 69,120,000 960,000 72

Running on CRAY-YMP for noise + 5% (See) (t)38000 (%)10 + 28 = 38

Running on CRAY.YMP for noise + 10% (See) (t)38000 17 + 61 = 78

for noise + 10%

Size of database 960000*2*80=153,600,000 bytes

(t) Direct use of the Mie formula to find the point best fitting 12 "experimental" intensities

takes 38000 seconds.
(%) Average time for searching possible cells is 10 sec. for scanning the best point is 28 sec.

A speed-up by a factor = 1000 for noise +5%; 500 for+ 10%.

TABLE H1. INVERSION FOR SPHERE-LIKE DROP (2D)

range divisions cells points

index 1.33-1.8 500 100 5

radius 4 - 8 (RA) 2000 200 10

Totals 1,000,000 20,000) 50

Running on CRAY-YMP for noise + 10% (See) (t)38000 7

Size of database 20,000*2*80=3,200,000 bytes
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Fig. 1. Function F=ln(j[i(Oi,Tr*)-i(Oi,¶1 0 )]2) is plotted over the permitted parameter space.

The source intensities i(O8,l1*) are generated from a parameter point for a uniform sphere

m*=1.515 and r*A/-6.98. The fitting hypothesis is chosen as the correct hypothesis (uniform
sphere), and the permitted parameter range is m,=[1.33,1.8] and r -=[4,8]. 1HX mesh points

are taken for both m, and r,. This figure displays the difficulty of finding a global minimum

when large size parameters are permitted.
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TWO-THREE PARAMETER FIT
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Fig. 2. Histograms based on 1000 droplets.
Fits based on H and V polarized detection at 0=90, 105, 120, 135, 150, 165.
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TWO-FOUR PARAMETER FIT
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Fig. 3. Histograms based on 1,000 droplets.
Fits based on H and V polarized detection at 0=90, 105, 120, 130, 145, 160.
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NEW 2D-4D FIT
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Fig. 4. Histograms (1,000 sphere droplets, 1,000 shell droplets)
Fits based on H and V polarized detection at 0=115, 125, 135, 145, 155, 165.

For shell data, there are no mis-match cases.
For sphere data, there are 47 mis-match cases.
The output" point is always in the neighborhood of the input point.

113



NEW 2D-4D FIT
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Fig. 5. Histograms (1,000 sphere droplets, 1,000 shell droplets)
Fits based on H and V polarized detection at 0=115, 125, 135, 145, 155, 165.

For shell data, there are 8 mis-match cases.
For sphere data, there are 221 mis-match cases.
The output point is always in the neighborhood of the input point.
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ABSTRACT

This study includes three standard classes of unclassified military smokes and

obscurants: 1) Standard liquid aerosol smokes, 2) Fibrous obscurants, and 3) Infrared

obscurants. Digital and optical implementations of the holographic ring detectcr
directly coupled into an optical neural network are studied as a means of increasing
the speed of the decision process for particle characterization. Additional work
completed utilizing a holographic ring-wedge detector and an optical neural network
combination for characterizing the particulates is included in this study is described.
The latter method has the ability to simultaneously recognize and distinguish the
spherical and nonspherical particle groups and to give a size range for spherical
particles. Single holographic optical elements fabricated to perform the same
functions as a ring detector and a simple two-layer, feedforward optical neural
network are evaluated. Future work will include expanding the capabilities of the
system to include more particulate types and to develop a field competent system.
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INTRODUCTION

Since the introduction of complex spatial filtering using the classical matched filter'
(CMF), the optical correlator has been used for numerous functions2*5 , but its potential
for particle sizing has not yet been fuliy exploited. Particle sizing is important for
many applications including quality control, atmospheric chemistry, cell sorting4'5 , and
smoke testing '•. Other optical methods for particle sizing include direct imaging8,
holographic imaging"'9 , Fraunhofer diffraction 1 "',, and light scattering1214_

The use of a ring-wedge detector (RWD) and a neural network (NN) software package
combination for pattern recognition has been introduced by George et al.' 5 who briefly
mention four possible applications of a-RWD-NN combination. More recently a RWD
was used to drive a series of LEDs, laser diodes or a 1 -D spatial light modulator as the
input to an optical neural network1" (ONN) and an optical associative processor 7 18 .
Yee and Ho' 9 used the outputs from a !aser velocimetry particle sizing instrument as
the inputs to a NN software package for the recognition and classification of
environmental, bacterial, and artificial aerosols based on aerodynamic particle size
distributions. The wedge regions of the detector can give an indication of the shape
of a particle independent of the size. We have previously demonstrated 20 sizing
opaque spherical particles using computer-generated holographic ring detectors
(HRDs). By directly coupling the outputs of a HRD into an optical processor, the
decision process in determining the particle size could be performed optically. This
would simplify the algorithms of the data collection computer and effectively increase
the potential speed of the particle characterization system.

Dugway Proving Ground is involved in testing military smokes and obscurants and
would like to monitor and characterize the smokes present at various points on a grid
in real time. At the very least, Dugway would like to identify the smokes and
obscurants and count the number of particles present each second. It is also desirable
for the instrumentation used to be a stand-alone, PC-based data acquisition system
to integrate effectively with currently available systems of the Instrumentation Branch.

Initially, Dugway is interested in the three standard classes of unclassified military
smokes and obscurants: 1) Standard liquid aerosol smokes, 2) Fibrous obscurants,
and 3) Infrared obscurants. The liquid aerosol smokes' in the first class can be broken
up into two groups. The first group consists of the hygroscopic smokes which react
with water vapor in air to produce white smoke droplets which are highly obscurant
at visible wavelengths. These obscurants include phosphorus-derived smokes, FS
(chlorosulfonic acid and free sulfur trioxide) smokes, HC (zinc oxide and
hexachloroethane aluminum) smokes, and FM (titanium tetrachloride) smokes. The
second group is disseminated in liquid form to produce droplets which are not
dependent on the relative humidity of the atmosphere. This group includes fog oil,
diesel fuel oil, and pclythylene glycol smokes. All of the standard aeroso: smokes
included in both of these groups making up this class of liquid aerosol smokes form
highly opaque spherical droplets, typically confined to the range between 0. 1 pJm and
15 Jm.
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S.ing additional information 7 available on fog oil smokes, an estimate can be found
on the number particles per second that would need to be characterized to handle the
high particulate concentrations utilized by Dugway. Taking the average particle
diameter to be at least 1.0 pm, the density of foj oil given as 0.9 g/cm3 , the
maximum fog oil concentration reported in the data as 321 mg/m 3, and a typical flow
rate for present particle sizing instruments of one cubic foot per minute, an estimated
upper limit of one million particles per second must be measurable. This rate would
tax even the fastest light scattering instruments available at the present time.

The fibrous obscurants are made from what looks like thin, black thread with a
diameter of 6 pm, cut into 1/4 inch (6.35 mm) or 1/8 inch (3.175 mm) lengths. The
fibers are then compressed side-byside into a network which looks very much like a
black hockey puck. To disseminate the fibers, the puck is put into a disseminator,
analogous to a blender, which separates the individual fibers and disperses them into
air.

The Infrared obscurant group consists of highly irregular brass and graphite flakes
designed to block the infrared wavelengths. The materials look like a fine gold or
blackish-grey powder. For this study only brass flakes will be used. It was possible
to isolate individual samples of the brass flakes for study in the lab where the graphite
would tend to smear and decompose into a finer powder.

METHODS AND MATERIALS

For this study two holographic optical element (HOE) were fabricated and
implemented in the Fourier plane P2 of the standard 4f optical corre;ator, see Fig. 1.
The first HOE was designed to perform the same function as a HRD directly coupled
into an ONN. The HRD part of the HOE has the same dimensions as described in our
previous paper 20 . For simplicity a two-layer feedforward ONN will be considered with
nine inputs and nine fully connected outputs where the nine outputs from the HRD
will be the nine inputs to the ONN. This ONN is the simple associative memory
vector-matrix multiplier. Table I lists the expected inputs to the ONN and Table II lists
the desired outputs from the ONN. The best interconnection weights for the ONN
must be determined. If Table I defines the input matrix X and Table II defines the
output matrix Y = I, where matrix I is the identity matrix, then the desired
interconnection weights are the single memory matrix M, such that MX = I.

The inputs listed in Table I are normalized so that the sum of the inputs (i.e., the total
intensity out of the HRD) is equal to one. There are three justifications for this
normalization. First, it is an easily realizable and measurable normalization. Second,
the total output of the HRD can easily be sampled and used as a bias input required
for many NN implementations. Finally, this bias establishes the threshold value to be
used at the output of the ONN for determining which outputs are high and which are
low. Computer experiments which inc1.,' this additional bias term as an input to
the ONN to determine the interconnection weights for this two-layer feedforward ONN
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Figure 1. The standard 4f optical correlator.

Table I. NORMALIZED INPUTS FROM THE HRD INTO THE ONN

Ring 28pm 35pm 43prm 50pm 60Cm 70pm 85pm 100pm 115pm
Number Particle Particle Particle Particle Particle Particle Particle Particle Particle

1 0.0683 0.0995 0.1431 0.1866 0.2386 0.2779 0.2363 0.0846 0.0068
2 0.0965 0.1343 0.1803 0.2174 0.2388 0.2224 0.0990 0.0098 0.1045
3 0.1398 0.1804 0.2154 0.2258 0.1850 0.1033 0.0124 0.1495 0.3025
4 0.1638 0.1871 0.1826 0.1471 0.0614 0.0085 0.1299 0.2879 0.1472
5 0.1678 0.1586 0.1092 0.0504 0.0050 0.0664 0.2129 0.0891 0.0453
6 0.1639 0.1123 0.0367 0.0045 0.0582 0.1460 C 0650 0.0736 0.1619
7 0.1248 0.0435 0.0043 0.0437 0.1077 0.0568 0.0693 0.1301 0.0434
8 0.0622 0.0061 0.0617 0.0970 0.0311 0.0571 0.0904 0.0899 0.0860
9 0.0127 0.0781 0.0668 0.0274 0.0742 0.0616 0.0847 0.0855 0.1023

Table I1. DESIRED OUTPUT FROM THE ONN

Ring 28pm 35pm 43/pm 50pm 601im 70pm 85pJm 100pum 115pim
Number Particle Particle Particle Particle Particle Particle Particle Particle Particle

1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
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did not show any significant advantages over computer experiments that did not
include this bias term. Therefore, the bias was not included as an input to the HRD-
ONN fabricated for this study but was used to normalize the outputs of the ONN.

Using the standard error back-propagation algorithm as implemented by NeuralWare,
Inc. 21 in the NeuralWorks Professional Ih Neural Computing software package results
in the memory matrix

-5.7 6.7 -3.8 0.8 1.2 1.4 4.3 3.0 -3.2

7.3 -9.4 8.1 -1.4 3.8 0.1 -2.1 -12.0 -3.9

-10.2 16.7 -13.0 8.7 -4.8 2.1 -4.5 5.5 6.6

7.7 -9.9 9.8 -3.8 3.0 -3.3 -0.8 -0.2 -10.4

M = -4.4 5.4 -1.2 -2.7 0.7 -4.8 8.5 -1.8 7.6 (1)

5.1 -1.4 -2.5 4.16 -5.6 8.2 -7.0 -0.2 -4.9

-0.2 -2.2 1.8 -5.5 6.0 -4.8 3.0 3.5 5.5

2.8 -2.3 -2.1 5.7 -5.3 2.8 -1.1 -0.5 -1.0

-1.2 -2.7 4.0 -4.8 1.9 -0.6 0.7 3.6 4.6

for this HRD-ONN computer experiment. Figure 2 depicts the outputs from the HRD-
ONN expected as a function of input particle diameter with a memory matrix M using
the standard error back-propagation method given by Eq. 1. Next the interconnection
weights for matrix M are set to integers so that the positive numbers become integers
from 0 and 15, and the negative numbers become integers from 0 to -1 5. The
integers 0 to 15 were chosen because they can be represented with a four-bit integer
and represents a typical resolution for most HOE fabrication methods. The matrix M
represented by Eq. 1 becomes

"[-5 5 -3 0 1 1 3 2 -2

6 -8 7 -1 3 0 -1 -10 -3

-9 15 -11 7 -4 1 -4 4 5

6 -8 8 -3 2 -2 0 0 -9

M =-3 4 -1 -2 0 -4 7 -1 6 (2)

4 -1 -2 3 -5 7 -6 0 -4

0 -1 1 -4 5 -4 2 , 4

2 -2 -1 5 -4 2 -1 00

-1 -2 3 -4 1 0 0 34

after setting the interconnection weights to integers. Figure 3 depicts the outputs
from the HRD-ONN expected as a function of input particle diameter with a memory
matrix M using the standard error back-propagation method with integer
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Figure 2. Responses for the output layer nodes as a function of spherical particle
diameter using the standard error back-propagation method.
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Figure 3. Responses for the output layer nodes as a function of spherical particle
diameter using the digitized interconnection weights.
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interconnections given by Eq. 2.

A bipolar representation for the interconnection weights was used, meaning that the
positive and negative weights were treated separately. Positive values are deflected
to a different point than the negative values. At the output two peaks must be
measured, one for the positive values and one for the negative values, and the
difference between the measured intensities gives the final answer. To provide
varying interconnection magnitudes each ring is divided into 32 sections and only the
required number of sections equal to the digitized interconnection weight has a grating
within that area. The maximum any one output requires is 15 of the 32 sections.
This sectioning method works for perfectly spherical particles only. A better method
would be to modulate the magnitude of the grating over the entire ring to minimize the
effects of possible intensity fluctuations. However, this modulation requires higher
resolution capabilities in the fabrication process which are not available using our
photoreduction method.

The second HOE was designed to perform the same function as a holographic ring-
wedge detector (HRWD) directly coupled into an ONN. The dimensions of the ring
sections were identical to the ring sections of the fist HOE and eight 450 wedge
sections were included. Ternary-valued (i.e., ± 1 and 0) interconnection weights were
used so that entire ring sections would be used and sigmoid transfer functions were
electronically implemented at the output nodes of the ONN. Two output nodes were
included representing when brass flakes or fibers were introduced at the Object plane
P1 in addition to the previous nine output nodes representing the nine spherical particle
size ranges. The matrix M becomes

0 0 0 0 10 10 0 0 -100

0 0 0 10 0 0 0 -100 0

0 0 10 0 0 0 -100 0 0

0 0 10 0 0 -100 0 0 0

M= 0 10 0 0 -100 0 0 0 03

10 0 0 -100 0 0 0 0 0

10 0 -10 00 0 0 0 0 0

0 -100 0 10 0 0 0 0 0

[-100 0 10 0 0 0 0 0 0

for the ring sections connected to the nine output nodes representing the spherical
particles. Figure 4 depicts the outputs from the HRWD-ONN expected as a function
of input particle diameter with a memory matrix M using the sigmoid transfer function
method with ternary-valued interconnections given by Eq. 3.

To fabricate the HOEs, an HP compatible plotter was used to produce an enlarged
version of the desired HOE. The plot was then photoreduced onto Kodak High Speed
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Holographic Film SO-253. In the photoreduction process the object and image
distances are chosen so that the image of the filter is reduced by the same amount
that it was enlarged during the plotting process. The lenses used were Fourier
transform lenses with an inside diameter of 7.2 cm and a focal length of 37.4 cm.

EXPERIMENTAL RESULTS

The output of the correlator was recorded for 25 pm, 35 pm, 50 pm, 70 pm and
100 pm particles, and with fibers and brass flakes for the HRWD-ONN. Precision
drilled pinholes were used to simulate the spherical particles. Figure 5 gives the
results using the HRD-ONN with the solid lines representing the integrated intensity
for each output neuron as predicted by the computer experiment program. The high-
low bars represent the range of integrated intensities measured for the input particle.
Figure 6 gives the results using the HRWD-ONN for the nine outputs representing the
spherical particle size ranges with the solid lines representing the integrated intensity
for each output neuron as predicted by the computer experiment program after an
electronically implemented sigmoid function was applied. For all five spherical particle
sizes utilized, it is expected that there will be one output neuron easily distinguishable
from the rest. All integrated intensities were normalized by the bias terms.

II II
C

0 '

0 50 100 150 200

Particle Diameter (/,m)

Figure 4. Responses for the output layer nodes as a function of spherical particle
diameter using the ternary-valued interconnection weights and a sigmoid
transfer function.
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CONCLUSIONS

In spite of the various limitations and approximations, the HRD-ONN worked quite
well. Using a winner-takes-all (WTA) algorithm, the HRD-ONN correctly ;dentified all
five spherical particle sizes introduced at the input plane. There are many HRD-ONN
combinations that could be considered. The purpose of using an ONN is to improve
the overall speed of the particle characterization instrument. Photoreduction was used
to fabricate the HRD-ONN used for this study. Unfortunately, photoreduction has an
inherent size-resolution trade-off restriction. This severely limited the complexity of
the HRD-ONNs that were considered. A higher resolution, large area method such as

10
0K I70*. 1
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t-4

00 0 50

"• ~3
""D

o 35\

0 25

1 3 5 7 9

HRD-ONN Output

Figure 5. Solid lines represent the HRD-ONN computer experiment intensities
integrated over the correlation peak. High-low bars represent the range
of integrated intensities measured,
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Electron-beam fabrication would be ideal for this application. The nine input, nine
output HRD-ONN was adequate for evaluation purposes and performed as predicted.
However, for a field competent system the HRD-ONN would need to have better size
range capabilities and better output control.

The HRWD-ONN correctly identified each particle type and size range for the spherical
particles. In addition, the HRWD-ONN had better output control than the HRD-ONN
and does not suffer as greatly from the size-resolution trade-off problem. The main
disadvant.age with the HRWD-ONN is that part of the decision process was removed
from the ONN since we required the computer to implement the sigmoid transfer

C
0 s: u 700
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-- 70D

* .- 50~
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o 25
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HRWD-ONN Output

Figure 6. Solid lines represent the HRWD-ONN computer experiment intensities
integrated over the correlation peak with a sigmoid transfer function
applied.
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function on the recorded measured outputs of the ONN. Solutions to this problem
could include using an optical implementation of the transfer function or use a
computer that could implement the transfer function on all eleven output nodes at the
desired rate of one million particles per second.

Much work still needs to be accomplished. Future work could include developing a
field competent system, based on the principles demonstrated in this paper, capable
of characterizing high obscurant concentrations. Figure 7 depicts an optical layout we
are investigating capable of achieving the desired one million particles per second rate.
Further work could also include expanding the capabilities of the system to
characterize a larger set of particulates or generalizing the capabilities of the system
to characterize an L-bitrary spherical or nonspherical particle against an established set
of reference shapes.
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ABSTRACT

The breeze tunnel at the Edgewood Research, Development and Engineering Center (Edgewood
RDEC) at Aberdeen Proving Ground, Maryland, is a unique facility for determining thk efficacy
of released smoke/obscurants in flowing air as a function of controlling variables. Optimum
material feed characteristics and generator operating conditions can be determined. The facility
allows investigation of the effects of different generator operating variables, airborne
concentrations, and airborne particle sizes on mass extinction coefficients. During trials in the
breeze tunnel, obscurants have been released from the compact-disc-generator, the IR-Log
generator. and the XM56 generator. Obscurant release rates have ranged from an instantaneous
puff to a continuous release of 10 lb/min. Extinction can be measured in the visual, infrared, and
millimeter ranges of the electromagnetic spectrum. Experimental conditions allow calculation of
mass extinction coefficients as a function of generator variables, including material release rates.
Average mass extinction coefficients address attenuation from obscurants, both single primary
particles and aggregates. The breeze tunnel facility can accommodate trials by clients from
within Edgewood RDEC, the Department of the Army, and the Department of Defense (D)oD).

INTRODUCTION

The U.S. Army Edgewood Research, Development and Engineering Center (Edgewood RDEC)
operates a breeze tunnel within building E5584 at the Edgewood area of the Aberdeen Proving
Ground, Maryland. A generator releasing obscurant into the inlet of the breeze tunnel is shown in
Figure 1. The obscurant generator system can be located in front of the inlet (as shown in
Figure. 1) or within the inlet of the breeze tunnel.

One purpose of the breeze tunnel is to determine the efficacy of obscurant generators and released
obscurants. The breeze tunnel has a nominal wind speed of 2.2 m/s (5 mph). The cross section of
the tunnel is 4.27 m x 4.27 m (14 ft by 14 ft), and the length is 53.0 m (174 ft). Figure 2 is a plan
view of the breeze tunnel, showing locations of the laser and radar lines of sight and of the filter
transporters used to determine airborne mass concentrations. (Airborne mass concentrations are
required for calculation of mass extinction coefficients from transmittance.) During particle
generation, release efficacy can be investigated with CO2 and HeNe lasers and 35- and 94-GHz
radar and with airborne mass concentration samplers near the opposite end of the breeze tunnel.

Use of the breeze I nnel for obscurant trials minimizes environmental concerns during
development of ooscurant programs. After an obscurant is released into the breeze tunnel,
obscuration can be measured within the visual, infrared, and millimeter ranges of the
electromagnetic spectrum. Environmental concerns during trials are minimized because airborne
particles are removed by a bag-house filter system before air is released to the environment.

The breeze tunnel is large enough to test at design release rates. In contrast to open air trials that
are dependent on wind direction, expensive, and subject to escalating environmental regulations.
the breeze tunnel allows trials under controlled and repeatable conditions because air flow is
unidirectional and constant.

t Pacific Northwest Laboratory is operated for the U.S. Department of Energy by Battelle

Memorial Institute under Contraci DE-AC06-76RIO 1830.
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FIGURE 1. Obscurant Release Into the 4.27 m x 4.27 m (14 ft x 14 ft) Cross-Section Inlet of
the Breeze Tunnel

Obscurants are released by the obscurant developer or contractor. Pacific Northwest Laboratory
(PNL) and Edgewood RDEC staff have operated the data acquisition system for 35- and 94-GHz
radar and for CO2 (10.6-I~m wave length) and HeNe (0.63-I~tm wave length) lasers. PNL staff
have operated the sampling transporter to determine airborne mass concentrations during trials,
and have analyzed and synthesized information from the data collected during trials (Sehmel et
al., 1992., i, 1993a, b). Synthesis ha' 1ddressed 1) mass extinction coefficients dekived from
transmittance and average airborne. •article mass concentrations, 2) the dependence of mass

* extinction coefficients on particle size, 3) aggregation of airborne particles, and 4) the extinction
yield per unit mass of obscurant released.

The breeze tunnel facility can accommodate trials by clients from within Edgewood RDEC, the

Department of the Army, and the Department of Defense (DoD). Clients have three options for
using the tunnel: use just the facility, setting up project-specific equipment and instrumentation;
use the facility witm its instrumentation; or use the facility, its instrumentation, and its support
personnel to develop the experimental plan, run the equipment, and analyze the data. This paper
describes the facility and outlines the calculation of mass extinction coefficients and alpha yield
with the intent of encouraging trials by other DoD clients in the breeze tunnel facility.
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FIGURE 2. Plan View of Breeze Tunnel with Positions of the Lasers, Radar, and
Transporter for Filter Samplers for Average Mass Concentration

BREEZE TUNNEL TEST EQUIPMENT

As shown in Figures 1 and 2, obscurant can be released near and within the air inlet of the breeze
tunnel. Positions of lasers, radar, and transporter for filter samplers for determining average
concentrations within the breeze tunnel are included in Figure 2. The data acquisition computer
is in the control room outside the tunnel along the near wall.

Important features of the breeze tunnel include the following:
"* radar to measure transmission
"* lasers and power meters to measure transmission
"* filter transporters to measure airborne concentrations
"* pitot tubes to measure wind speed
* sensors to automatically record temperature and humidity
* computer control system for data acquisition during trial operation.
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To evaluate mass extinction coefficients, airborne particle mass concentrations are measured at
six filter locations along the middle filter transporter shown in Figure 3. Each filter transporter
has three pipes oriented along a vertical plane. The middle pipe size is 1-in., and the other pipes
are 1-1/4-in. The middle pipe is a sliding pipe supported by bearings on the upper and lower
pipes. The middle pipe has pipe connections for filter samplers and supplies vacuum to the six
filer samplers. Connections (1/8-in. pipe nipples) along the side of this middle pipe supply
vacuum to the filter holders (in-line holder, Gelman model 1235 for 47 mm filters)!.

Filter Array on Middle Transporter Inserted into the Breeze Tunnel

Top and Bottom Transporters
with Filter Anrays Outside the Ceiling
Breeze Tunnel

Top Transporter

Middle Transporter Y' [ l + + Far
1 2 3 4 5 6 Wall

Filter Position and Number

Bottom Transporter if
Floor

Control
Room

Transporter Rail Support Side

for Three Filter Arrays Cross Section Of Breeze Tunnel

Not to Scale

FIGURE 3. Schematic of Three Filter Transporters with the Middle Transporter
Inserted in the Breeze Tunnel

There is a maximum of two lasers at each measurement location. These can be either CO 2 or
HeNe lasers or one of each. The measurement location is 49.1 m (161 ft) from the inlet of the
breeze tunnel. The radar path length is the 4.27-m (14-ft) width of the tunnel. The laser path
length is adjustable, either the entire 4.27-m width of the tunnel or shorter distances. For
example, a 1.07-m-wide (3.5-ft-wide) interval in the center of the tunnel has been used. The
1.07-m lxth length was created by containing the laser beam within aluminum tubes that
extended 1.60 m (5.25 ft) from either side of the tunnel.

1Gelman Sciences, 600 S. Wagner Road, Ann Arbor, MI 48103-9019.
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Radar transmission at 35 and 94 GHz, laser transmission with CO2 and HeNe lasers, airborne
mass concentration (using filter array on the middle filter transporter ), and wind speed are all
measured along approximately the same line of sight. The distance between the radar
transceivers is about 0.36 in (14 in.). Radar transmission is measured at a distance of about
1.5 m (5 ft) upwind from the laser measurement location. Airborne concentrations and wind
speed are measured 0.91 m (3 ft) downwind of the lasers. Laser transmission, concentrations,
and wind speed across the width of the breeze tunnel are measured at a height of 2.16 m
(7 ft 1 in.). Radar transmission is measured at a height of about 1.5 m (5 ft).

Extinction coefficients are calculated from transmission results, and airborne mass
concentrations measured along the middle filter transporter. For the 4.27-m (14-ft) laser path
length, an average concentration is calculated from all six filter sample locations along the filter
array for the middle filter transporter. For the 1.07-m (3.5-ft) laser path length, the average
concentration is calculated from only the central two filter samplers.

Breeze Tunnel Geometry

As shown in Figure 1, the tunnel inlet is immediately behind the building's sliding doors, which
are adjacent to a driveway. The edges of the opening for the sliding doors are at the tunnel floor,
walls, and ceiling. The size of the door, and thus the cross section of the breeze tunnel, is
4.27 m x 4.27 m (14 ft by 14 ft). The tunnel length extends at full size 53.0 m (174 ft) from the
inlet. The tunnel walls then converge in a distance of 1.5 m (5 ft) into the 1.8 m x 1.8 m
(6 ft x 6 ft) framework for a bag house, where air is cleaned in a bag filter system and exhausted
through a blower at slightly greater distances. An automatic carbon-dioxide fire extinguishing
systemI is installed in the baghouse. An exhaust blower draws air through the tunnel and bag
house and exhausts filtered air through a stack.

Radar Transmission Measurement

Radar frequencies are 35 and 94 Gi~z. The radar system2 was originally constructed by Stuart
(1984) for the Chemical Research and Development Center (CRDEC) and has been modified by
CRDEC and Edgewood RDEC. Radar transmittcrs are located outside the breeze runnel neal tielt
wall opposite the control room (Figure 2). Radar transmission across zhe tunnel is measured with
transceivers outside the breeze tonnel and near the wall adjacent to the control room. The radar
signal passes through plastic windows in both walls. Radar lines of sight extend horizontally
across the width of the breeze tunnel and perpendicular to its walls.

Each radar transmitter has a calibrator to set the radar output from 0 to 30 dB in 1-dB increments.
The computer program calibrates the radar by measuring the voltage output of the transceiver as
a function of the signal attenuation ii-, decibels. The calibration yields information on decibel
power transmitted versus the voltage output of the transceiver.

1Kidde, Inc., Fire Suppression Operations, Wake Forest NC 27587.
2 Constructed for Edgewood RDEC (formerly CRDEC) by Franklin Institute, 20th Street and Parkway, Philadelphia.

19103.
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Radar transceivers measure transmission as a function of time across the breeze tunnel. The
purpose of the transceiver is to measure the reduction in received power at the transceiver
(i.e., the reduction in voltage) when obscurant is present in the breeze tunnel, Calibration data
allow conversion of transceiver voltages to attenuation in decibels. The reduction in decibels is a
fraction of the decibel measurement in the absence of the obscurant, i.e., the baseline
transmission before and after material generation.

Laser Transmission Measurement

Laser lines of sight are horizontal, extending across the entire width of the breeze tunnel and
perpendicular to the tunnel walls. The lasers are outside the breeze tunnel and near the far wall.
The laser signal passes through an opening in the far wall, crosses the tunnel, and exits through
an opening in the near wall.

Two types of lasers are used, a 5.5-W CO2 laser with a wavelength of 10.6 gim and a 35-mW
HeNe laser with a wavelength of 632.8 nm. The CO2 lasers are Laser Photonics1 model
CL-AOVO. (To improve the temperati" ý siability of the CO2 lasers, these air-cooled CO2 lasers
are currently being replaced with water-cooled CO 2 lasers, Laser Photonics model CL-75W000.)
The HeNe lasers are Spectra-Physics 2 model 127-355. At each laser location, the distance
between the laser lines of sight is 11 cm (4.5 in.) along a horizontal plane. 'The HeNe laser was
11 cm downwind (toward the ba'--c use of the tunnel) of the CO2 laser.

Transmission is calculated from the- ..'..::-ion in voltage that occurs when obscurant is present in
the tunnel. Transmission is calculated as a fraction of the power-meter voltage in the absence of
the obscurant, i.e., a fraction of baseline transmission before and after material generation.

Transmission across the tunnel is measured with power meters outside the tunnel and adjacent to
the near wall. There is one power meter for e-ch laser. Power meters are Laser Precision
Corporation 3 model RKP5710 radiometers with RKP575 pyroelectric probes. These power
meters have a 14-decade dynamic range (10-11 to 103). Scale ranges aie 200 lW, 2 mW,
20 mW, 200 mW, 2 W, and 10 W. The analog output voltage for each power meter is received
by the computer data acquisition system over a Hewlett-Packard 4 interface bus (HPIB).

Airborne Concentration Measurement

Airborne concentrations (in mg/m3 air) are time-averages for collection of particles on filter
samplers over the sampling interval. The filter sample locations relative to the near wall of the
breeze tunnel are listed in Table 1. The filter spacing is approximately 0.6 m (2 ft).

As illustrated in Figure 3, airborne concentrations can be measured at six filter locations along
three filtcr transporters for filter arrays. Each transporter has a sliding rail that includes filter
supports, filters, vacuum supply, and a critical orifices (Anderson-Forester model PL-629) 5 for

1 Laser Photonics, 12351 Research Parkway, Orlando, FL 32826.
2 Spectra-Physics Laser Products Division, 1250 W. Middlefield Road, Mountain View, CA 94039-7013.
3Laser Precision Corporation, 1231 Hart Street, Utica, NY 13052.
4 Hewlctt-Packard, Inc., 8245 North Union Boulevard, Colorado Springs, CO 80920.
5Anderson-Forester, 6250 Joyce Drive, Golden, CO 80403.
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TABLE I. Filter Positions near Laser and Radar Lines of Sight for
Collection of Airborne Mass Concentration

Incremental Distance Cumulative Distance from
B•tween Locations Wall near Computer Room

Lcto m _(in,.) rn (ft)
Near wall

0.56 (22)
Filter 1 0.56 (1.83)

0.61 (24)
Filter 2 1.17 (3.83)

0.61 (24)
Filter 3 1.78 (5.83)

0.72 (28.5)
Filter 4 2.50 (8.21)

0.61 (24)
Filter 5 3.11 (10.21)

0.61 (24)
Filter 6 3.72 (12.21)

0.55 (21.5)
Far wall 4.27 (14)

each filter sample to control air flow and to maintain a constant sampling rate. As shown in
Figure 3, the middle sliding rail is inserted into the breeze tunnel to collect material for
calculation of mass extinction coefficients.

The sampling height for the middle transporter is 2.16 m (7 ft I in.) and approximates the heights
for the lasers and radar. The simultaneous use of the bottom and top filter transporte: al!kw
investigation of concentration variations as a function of height, heights of 0.91 m (3 ft) and
3.43 m (11 ft 3 in.), respectively.

In order tc calculate mass extinction coefficients, airborne concentrations are m:asured with
isokinetic air samplers along the middle transporter. Each sampler is connected to an in-line
filter holder for a 47-mm-diameter filter. An isokinetic sampler is a metal tube with a beveled
inlet edge to improve sampling. Isokinetic inlet diameters of 0.84 cm (0.33 in.) and 1.88 cm
(0.74 in.) have been used. Particles flow through 3.3 cm (1.3 in.) and 6.1 cm (2.4 in.) lengths of
metal tube, respectively. The sampling rate is constant and assumed to be isokinetic throughout
each trial.

After particle collection, the sliding rail is withdrawn from the breeze tunnel and the filters are
removed for gravimetric analysis. Filters are weighed in a room cooled by refrigerated air
conditioninp.
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Airborne Particle Size Measurement

An AndersenI ambient-particle cascade impactor (non-viable) is used to determine avera Qe size
distributions as a function of airborne particle diameter. The impactor has been located N 1th the
inlet about 15 cm (6 in.) below filter number one on the filter array for the middle filter
transporter (see Figure 3 with transporter inserted into the breeze tunnel) and betweta thL t ,ntrol
room side of the breeze tunnel and filter number one, about 15 cm (6 in.) from filter number one.
The diameter of the inlet tube to the impactor is 1.6 cm (5/8 in.). At a sampling flow rate of
18.8 L/min, the aerodynamic particle diameters for 50% collection at successive impactor stages
were 11.3, 7.2, 4.9, 3.4, 2.2, 1.1, 0.66, and 0.44 gm.

The sampling time for particle collection is adjusted to allow sufficient material to be collected
above gravimetric detection limits, but not so loitg as to cause overloading. Particles are
collected on pre-weighed collection plates placec on e~ch stage. Gravimetric analysis is used to
determine particle collection on each collection site. The limit of accuracy for gravimetric
analysis is about 0.050 mg.

Size distributions for trials are as~nmed to be lognormal distributions by mass. The aerodynamic
mass median diameter (AMMD) and D84 particle diameter characterize the log-normal
distribution. By definition, 50% of the mass is greater than ,.he AMMD and 50% is less.
Eighty-four percent of the cumulative particle mass has diameters less than D84. The geometric
standard deviation (GSD) is the ratio DR4/AMMD. The smaller the value of GSD, the narrower
is the size distribution.

Velocity Measurement

Air velocity in the breeze tunnel is measured with Dwyer2 166-12-CF pitot tubes. A velocity
profile is obtained by an array of seven pitot tubes. These are mounted horizontally across the
tunnel at approximately the level of the laser lines of sight. Table II lists the position of each
pitot tube. Filter samplers are approximately midway between adjacent pitot tubes.

Each pitot tube is connected to an MKS 3 model 220BD pressurc transducer. The analog output
of the transducer is multiplexed to the computer data acquisition system by means of multiplex
input cards. Output of the pressure transducer is 0 to ± 10 volts for 0 to ± 1.4 cm
(0 to ± 0.54 inches) of water. At an air flow rate of 2.2 m/s (5 mph) in the tunnel, the system is
expected to provide an output pressure of 0.3 mm (0.012 inches) of water or 0.22 volts.

Two control relays provide control of the calibration valves for the pressure transducers. These
relays zero the transducer (and clean the pitot tubes) and set the transducer span. A computer-
controlled valve system calibrates the pressure transducers. The valves can be controlled to

1) connect ambient pressure to both sides of t;ie pressure transducer (at the same time
providing air pressure to clear possible obstructions from both the impact and reference
ports of the pitot tube),

IGraseby Andersen, 4801 Fulton Industrial Boulevard, Atlanta, GA 30336-2003.
2Dwyer Instruments Inc. P.O. Box 373, Michigan City, IN 46360.
3MKS Instruments, Inc., 6 Shattuck Road, Andover. MA 01810.
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TABLE II. Pitot Tube Positions near Laser and Radar Lines of Sight for
Measurement of Wind Speed

Incremental Distance Cumulative Distance from
Between Locations Wall near Computer Room

Lati _ M (in.) m (ft)Nea," wall 0.23 (9.25)
Pitot tube 1 0.23 (0.77)

0.61 (24)
Pitot tube 2 0.84 (2.77)

0.61 (24)
Pitot tube 3 1.45 (4.77)

0.77 (30)
Pitot tube 4 2.22 (7.27)

0.61 (24)
Pitot tube 5 2.83 (9.27)

0.61 (24)
Pitot tube 6 3.44 (11.27)

0.61 (24)
Pitot tube 7 4.05 (13.27)

0.22 (8.75)
Far wall 4.27 (14)

2) connect a micrometer-sized manometer to the impact side of the pressure transducer
while maintaining the reference side of the transducer at ambient pressure, or

3) connect the transducer to the pitot tube.

Temperature and Humidity Measurements

Temperdture and humidity are measured within the tunnel inlet and 4.6 m (15 ft) from it. Air is
sampled at the 2. 1-m (7-ft) height adjacent to the near wall. Temperature an( midity are
measured with an EG&G 1 model 911 digital humidity system. Data are store(, oy the computer
data acquisition system.

Computer Control System

Data acquisition and storage are computer controlled. The computer stores real-time data for
radar transmission and wind speed. Figure 4 is a block diagram of the system's computer
hardware and instrumentation. A Hewlett-Packard (HP) 310 computer with 5 megabytes of
random access memory (RAM) is used for primary system control and data acquisition. An
HP 9133 combined 10-megabyte hard disk drive and 3-1/2-in. floppy disk drive is used for
program and data storage. The program and menu data are stored on the hard drive. Data are
stored to the 3-1/2-in. floppy drive and printed to an HP 2225A ink-jet printer. All data input

IEG&G, 151 Bear Hill Road, Waltham. MA 02154.
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to the system are analog and are read into the computer by means of an HP 3852A data
acquisition system that contains an HP 44702A voltmeter and two HP 4471 1A, 24-channel high-
speed multiplex input cards. System control is provided through the HP data acquisition system
by means of an HP 44725A, 16-channel general purpose switching output card. Output control
for the two radar systems is provided by means of an IOtechl HPIB 488-to-RS232 converter.

A menu-driven data acquisition and control program acquires and stores transmission data from
lasers and radar, as well as velocity, temperature, and relative humidity. Array menus are used to
make all system assignments (such as the electrical assigrnmrenis of data monitors and system
control components), to enter monitor calibration valu., .ind to make protocol parameter
assignments (such as data acquisition timing values). A "comm|ent" selection allows the operator
to type comments to a computer file. If the protocol requires that data be taken while the
operator is in the comment menu, the comment is interrupted while the data are taken.

All protocol information (such as measurement timing), instrument calibration, measurement
data, event times (such as time of start of generation of the obscurant and aerosol filter collection
times), and comments made by the operator or the computer are saved to a 3-1/2-in. floppy disk.
Protocol, calibration, and other information that may apply to a series of trials is stored to the
hard drive and copied to the floppy disk. Immediately after a trial series, the operator makes a
backup of the floppy disk and write-protects and stores the original separately from the backup
disk and printouts.

CALCULATION OF MASS EXTINCTION COEFFICIENTS AND ALPHA YIELD

The following sections list the equations to calculate mass extinction coefficients and alpha
yield. The calculation of mass extinction coefficients requires laser transmission and airborne
particle concentration.

Mass Extinction Coefficient Calculation

Transmittance at wavelength X, TX, is a function of the mass extinction coefficient at that
wavelength, c•. (in m2/g), and the concentration path length, CL (in g/m2). The mass extinction
coefficient quantifies the degree of extinction of radiant energy propagating through airborne
smoke/obscurant particles. The CL value is the integral of concentration along the path through
the obscurant cloud, a product of concentration (C) and path length (L).

The Beer-Lambert relatonship between transmittance, extinction coefficient, and concentration
path length (CL) is

T/To = exp(-ccCL) (1)

110tech, PO Box 391345, Clvcland, OH 44139-9846.
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where T/To • normalized transmission of transmitted (T) to incident (TO) radiation (T/T, is
also called transmission or transmittance)

a = mass extinction coeficient
CL= concentration integrated along the path of propagation (m2/g)
C = obscurant concentration (g/m3)
L =laser path length (m).

The mass extinction coefficient is equal to

a - -In(TT) / (C L). (2)

Alpha Yield Calculation

A figure of merit for an obscurant material release is the alpha yield, or extinction yield per gram
of material released, which is calculated for the laser line of sight. The larger the alpha yield, the
greater is the efficacy of release of the obscurant material. The units of alpha yield are
m2/g~tl r.icas"

Alpha-yield estimates require simplifying assumptions. The expression for alpha yield is
obtained by combining Equation (1) and an equation for mass balance. The mass-balance
equation is

mY-CAr
(3)

where m = mass released rate (g/s)
Y - yield of airborne material per unit mass released (gairbome/gwctual mlesc)
A - cross-sectional area of the breeze tunnel (m2)
v - velocity (m/s).

It is assumed that the yield (Y) is equal to 1.0 and that the airborne concentration
[C = (rnY)/(Av)] and velocity are uniform across the tunnel's cross section. The average
concentration is measured.

A concentration value is needed to calculate alpha yield. Therefore, to predict concentration,

Equation (1) is rearranged to

C -- - In(7TiT) / (a L). (4)

Then to determine the alpha yield, the concentration C from Equation (4) is substituted into
"Equation (3),

m Y a - A v ln(T/Tr) / (x L), (5)

and the equation is rearranged to

(x Y = -A v ln(T/To) / (m L. (6)
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Thus alpha yield depends on the cross-sectional area of the breeze tunnel, average wind speed,
release rate, tunnel width, normalized transmission, and the assumption of uniform airborne
concentrations across the cross section.

DATA ANALYSIS PROCEDURE

The data analysis procedure is summarized here; details are included in trial reports Shlimel et
aL, 1992a, b, 1993a, b, c). Before analysis, data files are convened from the binary format of the
HP computer in the breeze tunnel to an ASCII format and then transferred to a Macintosh,
computer. Data analysis procedures use commercial software.

This section includes discussions of baseline voltages, and average transmission. The section on
baseline voltages describes the procedure to adjust the drift in baseline during a trial. The
section on transmission describes the procedure to evaluate average transmission during
sampling for airborne concentration.

Baseline Voltage Calculation

Transmission, T/To, is the ratio of voltages from the laser and radar power meters (radar
voltages are converted to decibels of attenuation). The ratio is the voltage during material
release to the baseline voltage in the absence of airborne material. During baseline times before
and after release of obscurant, the average baseline voltages are expected to be equal. However,
the laser and radar systems do not always satisfy expectations for a constant baseline voltage, and
usually they are not equal. Baseline voltages vary because of the effects of variations in ambient
temperature on the stability of laser and radar electronics, and beca, se of laser movement caused
by mechanical instability of the laser supports.

Consequently, there are three baseline periods. The initial baseline occurs before obscurant
reaches the laser line of sight. The trial baseline occurs during passage of the obscurant cloud.
The final baseline occurs after passage of the cloud. Average voltages are calculated for the
initial and final baselines, The trial baseline is represented by a linear interpolation between the
initial and final baselines.

To calculate transmission during cloud passage, experimental voltages are divided by baseline
voltage ratios, (Voltspower Meter)/(VOtSduring buellne). The term in the denominator considers three
periods for voltages: an initial baseline before particle release, the baseline during particle
release, and a final baseline after particle release. A linear interpolation is used to predict the
variation in baseline voltages between the initial and final baselines. The voltage adjustment
equation for the initial baseline is

Transmission = (VoltsPower Meter) / (Baselinetiiai). (7)

For the final baseline,

Transmission = (Voltsp0owe Meter) / (BaselineFina). (8)

1Apple Computer, Inc., 20525 Mariani Avenue, Cupcrtino, CA 95014.
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Ratios are also used to calculate transmission during material release. The analysis procedure is
to divide experimental voltages as a function of time by baseline values calculated by linear
interpolation between the end of the initial baseline and the start of the final baseline. The
voltage adjustment equation during material release is

Transmission = (Voltspowe Meter) / (BaselineC,,.,potawd). (9)

Average Transmission Calculation

Mass extinction coefficients are calculated from the average transmission during sampling for
mass concentration. Average transmission is the average of the time-weighted natural logarithm
of transmission (T/T.). The time-weighted average is

(T/T0o)v- = exp( ( I [ ln(T/To)i Atil / ( ts - tF ) ). (10)

where t = time for recording laser power meter voltage (s)
ts = time that sampling for average airborne mass concentration started (s)
tF = time that sampling for average airborne mass concentration ended (s).

A constant transmission value is optimal for calculating mass extinction coefficients. However,
the term "constant" describes an idealized obscurant cloud. In practice, transmission often
continues to change. During plume passage, transmission initially decreased and then tended
toward a constant value, with fluctuations around that value.

During a trial, the operator watches the control-room computer screen to estimate when constant
transmission begins, but also to ensure that a sample is taken dunng obscurant release. Sampling
during constant transmission is desired to improve the accuracy of mass extinction coefficients
calculated from the measured airborne mass concentration.

ILLUSTRATIVE RESULTS

Prior reports have discussed average laser transmission, aerodynamic particle diameter, mass
concentration, alpha yield, mass extinction coefficients, and dependency of mass extinction
coefficients on aerodynamic mass median diameter (AMMD). Sections on aerodynamic particle
diameter summarize AMMD and geometric standard deviation (GSD) for trials. For millimeter-
wave obscurants, airborne particle aggregation is inferred by comparing regions of transmission
at 94 GHz with those of transmission at 35 GHz. Sections on mass concentration summarize
average concentrations across the breeze tunnel. Sections on alpha yield summarize alpha yield
based on feed rates. Sections on mass extinction coefficients summarize mass extinction
coefficients for the attenuation of CO 2 and HoNe laser spectra, and the dependency on mass
concentration. Sections on mass extinction coefficients summarize the dependency of mass
extinction coefficients on AMMD,

The sections that follow illustrate results that might be expected from trials in the breeze tunnel. These
sections illustrate normalized transmission and the dependency of mass extinction coefficients on
the aerodynamic particle diameter. For these trials, the mass extinction coefficient for
attenuation of CO2 laser spectra ranged from 0.44 to 1.60 m2/g, and airborne concentration
ranged from 0.03 to 1.9 g/rn 3 .
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Mass extinction coefficients were calculated based on the average normalized transmission
(T/To) during sampling for airborne mass concentration, and based on the average measured
mass concentration. The T, is the transmission when obscurant is not airborne. The average
concentration was assumed to be the arithmetic average of concentrations measured along the
middle sample transporter. The average transmission during sampling for airborne mass
concentration was used in equation (2) to calculate the mass extinction coefficient from the Beer-
Lamhert relationship between transmittance, extinction coefficient, and concentration path
length.

Normalized Transmission

Normalized transmission for one trial is shown as a function of time in Figure 5. Included in the
figure is a horizontal line that represents the time of sampling for average airborne mass
concentrations and the average concentration [see equation (10)]. This average transmission was
used in equation (2) to calculate the mass extiaction coefficient.

Dependency on Aerodynamic Particle Size

As shown in Figure 6, mass extinction coeffliciente have been found to be a function of the
aerodynamic mass median diameter (AMMD), and mass extinction coefficients decreased as the
AMMD increased For these trials, the AMMD ranged from 2.80 to 7.49 gnm.

SUMMARY

The breeze tunnel allows the control of variables that are essential to evaluating mass ext.nction
coefficients for airborne obscurant particles in a flowing air stream and the efficacy of the
generators at a target generation rate of 10 lb/min. There is some residual uncertainty in the
precision of evaluating average mass extinction coefficients because of transient variations in
release mechanisms at the particle generator. Such variations also occur during field releases,
but variations in wind flow during field experiments cause much greater uncertainty. Field trials
can be considered tests of the influence of short-te-rm meteorology on the released particles
(airborne c,'ncentrations often change rapidly as a function of time and within the laser line of
sight), rather than tests of the efficacy of the particles to obscure.

In breeze tunnel trials, air flow is reproducible and always suitable for trials: unidirectional and
constant. For breeze tunnel trials with nearly collocated lasers, radar, and concentration
samplers, the precision and accuracy of experimental mass extinction coefficients are reliable
and are not influenced by the experimental vagaries in wind flow that confound results from field
experiments.

The breeze tunnel is a unique facility to determine the efficacy of released particles in flowing air
as a function of the controlling variables. Optimum material feed characteristics and generator
operating conditions can be determined. The facility allows investigation of the effects of
different generator operating variables, airborne concentration, and airborne particle size on mass
extinction coefficients for particles moving in a flowing air stream.
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ABSTRACT

Using a new technique based on the fanning of a coherent light beam

in a photorefractive BaTiO 3 crystal, the angular distribution of forward light

scattering by quartz fibers of radii from 15 gm to 30 gm has been

successfully measured. Data have been obtained over the angular range 0' to

0.3 and are in good agreement with theory.

INTRODUCTION

Light scattering by small particles has been the subject of intense

investigations for many decades. However, virtually all experimental work to

date has been limited to angles from near forward to backward directions.[!1

The limiting experimental factor in measurement of forward scattering is

the unscattered incident wave that is superimposed on the scattered wave.[21
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There has not been much experimental success in separating these

two waves in the forward direction. Most extensive are the microwave

analog techniques that have been used to measure light scattering in all

directions including 00.13. 41 In this approach microwave radiation is

scattered by macroscopically constructed targets in order to simulate light

scattering by micron-size particles at optical frequencies. In a direct optical

measurement, Spinrad used a special low-angle scattering meter to measure

volume-scattering functions down to angles as small as 0.10 from the forward

direction.1 5, 61 Forward-scattering measurements from an isolated sphere

have been made recently by using the Guoy pnase shift that occurs at the

waist of a focused Gaussian beam.1 71 However, that method is applicable only

to particles so small that the scattering phase shift can be neglected in the

analysis. Recently. we reported the first measurements of light scattering at

00 by single micron sized quartz fibers,1 81 and the first observations of

coherent scattering at 0 by a suspension of particles.1 91 For this previous

work we developed a novel technique based on the fanning of a coherent

light beam in a photorefractive BaTiO 3 crystal to separate the scattered light

in the forward direction frii the strong unscattered incident beam. The

present work reports an extension of the single particle measurements to

higher angular resolution, including angular distribution measurements near

zero degrees.

II. THEORETICAL BACKGROUND

Light scattering by a right circular cylinder is given by,11 ]

(Esper T2 E(T 0 per

Es.per) n 7tr (0A 7-2) (1)pe
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Here. Et and E. are the incident and scattered fields, respectively: and per

and par represent the polarization of the fields perpendicular and parallel to

the cylinder axis, respectively. Discussion in this paper centers on T2 , but

the same argument holds for T1 . Eq. (1) shows that there is an intrinsic

phase shift of 3ic/4 between the scattered field and the incident field. We

have taken this phase shift into account when measuring the scattering

amplitude T2 (0) for small angles, including zero degrees.

By using a novelty filter based on photorefractive beam fanning in

BaTiO 3 we have succeeded in reducing the background intensity due to the

unscattered beam so that it is comparable to, or even smaller than, the

intensity of the scattered field.18 ' 101 The concept is based on the fact that at

low intensities, beam fanning can take a long time (even seconds or longer)

to establish. Fields that are undergoing phase and amplitude changes on a

much shorter time scale do not undergo appreciable fanning. Consequently.

if the scattering particle(s) move sufficiently fast, the fields scattered by

them do not undergo fanning in a BaTiO 3 crystal, whereas the steady

incident field is fanned out of the forward direction. Forward scattering

from surface imperfections in windows, lenses, etc. does not contribute a

background to forward scattering measurements since this scattering is also

fanned out of the forward direction (i.e. these scatterers are stationary).

III. EXPERIMENTAL APPARATUS

Fig. 1 schematically illustrates our experimental setup for angular

resolved measurements of forward scattering by a quartz fiber. The cw Ar*

laser beam (514.5 nni), whose intensity was kept below 2 mW/cm 2 . is

polarized in the plane of the figure. This plane also contains the c-axes of

two BaTiO 3 -rystals: these axes are oriented symmetrically, as indicated by
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the arrows. Each is a 00 -cut crystal in the form of a cube with dimensions

5x5x5 mm 3 .

Polarizer Fiber L1 L2 A3 L3 A

f1 A, A2 f2\ f3 f3

Ar+ Laser Crystals Analyzer Computer

Figure 1. Schematic of the experimental apparatus.

To introduce a time dependence to the scattered light, the quartz

fiber is mounted on a 1 rpm synchronous motor that rotates it in a circle of

radius 3 cm so that it traverses the beam twice in each revolution.

Adjustable apertures Al, A2 and A3 define the angular acceptance and shield

both the crystals and the detector from stray light. Lens Li collects

forward scattered light over a small angular range and collimates it prior to

passage through the BaTiO3 crystals. Lens L2 focuses the transmitted light

onto a pinhole (aperture 3). and lens L3 re-collimates it so that the

transverse Intensity profile in the detector plane corresponds to the angular

distribution of the scattered light.

Most of the light incident on the first crystal is fanned out by it.

However, because of the asymmetric nature of beam fanning some of the

light is left of one side of the beam.["- 101 Much of this remaining light is

fanned out by the second crystal, leaving a background intensity in the

forward direction that corresponds to less than 1% of the incident light

intensity. As the fiber crosses the laser beam a pulse of scattered light is
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generated in this dark background. The angular distribution of this pulse is

measured with an optical multichannel analyzer (OMA) which has 1024

detection elements in a 1 inch length. This signal is recorded in a

computer and compared with tie results of theoretical calculations.

IV. EXPERIMENTAL RESULTS

Because the background intensity is not exactly zero, what is actually

measured is the interference pattern between the scattered field E,(x) and

the unscattered background field Eb(X). If forward scattering is measured

with the apparatus of Fig. 2. the intensity distribution A(x) in the detector

plane will have the form

I(x) = Ib(X) + I.(x) + 2(t• ) . Ibb(X) s (s) COS[€(X)]. (2)

Here Ib(X) = JEb(X)12 and I,(x) = [(X) - e- and t, are unit vectors

representing the polarizations of the scattered and the incident fields.

respectively; O(x) is the phase difference between the two fields: and x is

th2 position on the detection plane. There is. of course a one-to-one

correspondence between x and the scattering angle 0. According to Eq. (1)

the phase difference between the scattered field and the incident field is

O(e) = 31r/4+ (6) +kre I . (3)
(Cos8 0

Here €o(6) is the phase of T2 (0) and the last term is the phase difference

between a plane wave and a cylindrical wave at the detector plane. At and

near zero degrees, the phase factor. 0,) + 3r /4. generally has only small

fluctuations around a mean value 3n/4 radian. Therefore, I(x) is mainly the

interference between a plane wave and a cylindrical wave.
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Fig. 2 shows a typical measurement of the forward scattering from a

quartz fiber. The horizontal axis is the scattering angle in degrees and the

vertical axis is the intensity in arbitrary units. The thick curve is the

measurement and the thin curve is the calculation based on the measured

unscattered background. Two fitting parameters were used: the amplitude

of the scattered field at 00, and the position corresponding to 00. The

angular uncertainty obtained was =0.005°.

25 -

S20--

-- measurement - calculation

~10-Z.,
- 0

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.:

Angle (degrees)

Figure 2. Angular distribution of forward scattering by a quartz fiber.
The oscillatory structure is a consequence of interference with the residual
unscattered light.
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ABSTRACT

Experimental observations of the angular distributions due to
scattering of a phase conjugate reflected beam by a quartz fiber are
reported. It is shown that the scattered intensity due to the phase
conjugate beam is less than that due to a beam reflected by a normal

mirror.
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INTRODUCTION

It is well known that phase conjugated light can correct the phase

distortions introduced by a phase distorting medium. 1 .2 There have

been numerous experimental demonstrations of this phenomenon using

various phase distorters and phase conjugating media.3

Here we report the experimental observations of this phenomenon

using light scattering by a micron-sized particle. In an ideal case, if all
the light scattered by a small particle is reflected back toward the particle

by a phase conjugator, its phase should be corrected after interacting
with the particle the second time: in principle, the incident wave would

be recovered. In an experimental situation, generation of a phase
conjugate reflection of all the scattered light is probably not reasonable.

or of practical interest. Thus the precise form of the incident wave is

generally not recoverable. However, when light is scattered by a particle
with radius larger than the wavelength, the scattering probability in the

forward direction is so large that most of the scattered intensity is

confined in the forward direction. 4 Therefore in practice we can
approximately reproduce the ideal situation by phase conjugating a large

portion of the forward scattered light.

In the present work. a portion of the light scattered in the forward

direction by a quartz fiber is retroreflected by a phase conjugator and

re-scattered by the fiber. The angular distribution of this scattering is

compared with that due to retroreflection by a normal mirror.

EXPERIMENTAL APPARATUS

The experimental arrangements are schematically illustrated in

Figs. 1 and 2. A micron-size quartz fiber, whose axis is perpendicular to

the plane of figure, is used as a scattering sample. The 514.5 nm line of
a cw Ar+ laser is polarized In the plane of incidence (plane of the figure).

A 0-cut BaTiO3 crystal is used as a self-pumped phase conjugator. 5 The

crystal is a cube whose edge dimension Is approximately 5 mm, and its
c-axis is in the plane of incidence. The intensities of the laser beam and

the retroreflected beam are monitored throughout the experiment with

detectors 2 and I. respectively. The phase conjugate reflectivity of the
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c-ystal is estimated fromn these readings, and it was typically about 30%
relative to the mirror reflection. The retroreflected light going back into
the laser cavity is minimized by a neutral density filter. The angular
distribution of the scattered light is measured with a photomultiplier
tube (PMT) mounted on a rotating arm.

DeMcto 1one ...... Generato

FilterComputern

on a rotating *..... one Lock-in .......... >
arm ........ie

~signal
Detector 1I . Generator

PolarizConBSuMiror

+ 'I~kiberC

Ar Laser Neutral Chopper
Density Detector 2 1U NAdjustable
Filter LJ Diaphram

Figure 2. Apparatus schematic with norasccnjgt mirror. Thehpe
coprand lock-in ar c used in the second set of experiments.

PMT mou ted...........: C n157e



To calibrate the fiber size. the angular distribution of the scattered
intensity is measured without a retroreflector and the radius of the fiber
is determined by fitting this data to the theoretical calculations for the
angular scattering function of an infinite dielectric cylinder. 4 For all the
work to be described here, the fiber was a quartz cylinder with a radius
of 19.8 4m.

Two sets of experiments were performed. In the first set, the
output of the photomultiplier was recorded directly by the computer and
the data were then manipulated to separate the scattering by the
incident and the retroreflected beams. In the second set, the
retroreflected beam passed through a chopper arid the photomultiplier
output was processed by a lock-in amplifier tuned to the chopper
frequency (as indicated by the dashed components in F(gs. 1 and 2). The
lock-in output is proportional to the intensity of the light scattered from
the retroreflected beam.

FIRST EXPERIMENTAL RESULTS (DIRECT MEASUREMENTS)

Initially, the angular distilbution of the scattered Intensity is
measured without a retroreflector, Both the light scattered in the
forward direction and the incident laser beam are then retroreflected with
a normal mirror, as shown in Fig. 1, and the angular distribution of the
scattered light is measured again. Since this first set of experiments
does not employ the chopper, data foi scattering from the retroreflected
beam are obtained from these two angular distributions by subtracting
the initial one from the latter one. Fig. 3 shows the results for the
19.8 Pm radius quartz fiber. Data for scattering from the incident laser
beam (obtained in the absence of a retroreflected beam) are plotted as a
function of scattering angle 0. Data for scattering from the retroreflected

beam (obtained by subtracting the two angular distributions) are plotted
as a function of 180-0, so that fornvard scattering for the retroreflected
beam can be easily compared to the incident beam scattering.

As expected, the scattering of light reflected by a normal mirror has
a structure almost identical to that produced by the incident laser beam.
Due both to the reflections at the beani splitter and to the less than

perfect reflection at the mirror. some light is lost; this accounts for the
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differences in amplitude. In addition, at the larger angles there are some

anomalously large oscillations. With respect to these, we recall that the

scattered intensity distribution observed with the phase conjugate

reflected light was obtained by subtracting two independent data sets. In

the calculation of these differences, a small mismatch in the recorded

scattering angles was observed. This mismatch is believed to have

produced a systematic error that is responsible for these discrepancies at

the larger scattering angles.

6-----

5-

- Mirror Reflected Beam

4 I - Incident Laser Beam

3-.I

1-

0 - i r I I . '': r M i ' i.

40 65 90 115 140

Scattering Angle 9 (Degrees)

Figure 3. The scattered intensity distribution for the incident laser
and for the reflection by a normal mirror. Fiber radilis is 19.8 pnm.
wavelength is 514.5 nm. and polarization is pelildicular to the
fiber axis and parallel to the plane of incidence.

Next, the conventional mirror is replaced by a BaTiO 3 crystal, as in
Fig. 2. The forward scattered light is collected by a lens placed in front of

the crystal. The position of the lens is adjusted so that the forward

scattered light within a full (o01C angle of about 100 is incident on the
front face of the crystal. This light together with the incident laser beam
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is then self phase conjugated in the BaTiO3 crystal. The phase

conjugation of forward scattered light is confirmed by checking that the

diffraction pattern of the fiber at detector 1 is the same as the pattern

produced by the original beam at detector 2. The angular distribution of

the total intensity scattered by the fiber is then measured. As before, the

scattered intensity distribution due to the phase conjugate reflected light

is determined by subtracting the angular distribution of the scattered

intensity without the retroreflection from that observed with the phase

conjugate reflector in place. In order to normalize this difference to the

signal due to the normal mirror, it was multiplied by the signal observed

at detector 1 with a norrnal mirror reflector and divided by the signal

observed at detector I with a phase conjugate reflector. Fig. 4 shows the

intensity distributions for scattering from the incident laser beam and

from the phase conjugate reflection.

6 -

-Incident Laser Beam-4 . ...................................... I: ..............
PaeConjugate Reflected 3a

44
0 7 7 .. i - --------- r - -T- ' -

40 65 90 115 140
Sca tl erIng Angle 0 (Degrees)

Figure 4. The scattered intensity distribution for the incident laser
and for a phase conjugate reflection. Fiber radius is 19.8 ptm,
wavelength is 514.5 nmi. and polarization is perpendicular to the
fiber axis and parallel to the l)hane of incidence.
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The structure of the angular distribution produced by the

scattering of phase conjugate reflected light is significantly different from

that produced by the scattering of light reflected by a normal mirror. In

particular, note the suppression of scattering at small angles. However,
the anomalous oscillations observed at the larger angles in the last

experiment are also present here. Again. this is believed to be a

systematic error arising in the subtraction process.

SECOND EXPERIMENTAL RESULTS (CHOPPER BASED)

This systematic error was eliminated, and the data subtraction

procedure was avoided in a second set of experiments. In these, the

effects due to the scattering of retroreflected light were separated from

those due to the scattering of the incident laser beam by placing a

mechanical chopper in front of the retroreflector. This chopper

modulates the intensity of the retroreflected light and thereby produces a

modulation in the intensity of the scattering from the retroreflected

beam. The PMT signal due to the intensity of the scattered light is

amplified usirg a lock-in amplifier synchronized to the chopper

frequency. These additional components are indicated by dashed lines in

Figs. 1 and 2. As before, signals due to scattering from the incident

beam are obtained in the absence of a retroreflected beam. but in this

second set of measurements, the signals due to scattering from the

retroreflected beam are given directly by the lock-in output.

First, a normal mirror is used to retroreflect the incident beam and

the scattered light. The chopper is turned on and the angular scattering

function of the mirror reflected light is measured. In order to provide a

calibration for the lock-in otutput. these data are matched to the data for
the mirror reflected light in Fig. 3 and a calibration factor is obtained.

Results for the intensity distrn'ibutions of the scattering from the incident

laser beam and from the banm pro-dJuccd by reflection from a normal

mirror are shown in Fig,. 5. These data are analogous to those in Fig. 3.

As expected. the scattering of mirror reflccted light shows structure
similar to that of the incident laser beam. Note that the anomalously
large scattering that :pp(-.ars at large values of 6 in Figs. 3 and 4 is

absent here. Spectficall',. wlitn using th, lock-in technique there is no
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need to take the difference between two independent data sets, and this
introduction of uncertainty in the data is absent. Also, note that due to
the long time constant of the lock-in amplifier some of the detailed

structure is partially suppressed.

5-

- Incident Laser Beam

"E ij -1 Mirror Reflected Beam

3-

C

S2-

0 1 T I

0- I

40 65 90 115 140
Scattering Angle 6 (Degrees)

Figure 5. The scattered intensity distribution for the incident laser
and for the reflection by a normal mirror. The latter is measured
using the chopper and the lock-in (Fig. 1). Fiber radius is 19.8 Mro,
wavelength is 514.5 nm. and polarization is perpendicular to the
fiber axis and parallel to the plane of incidence.

Next, the normal mirror is replaced by a BaTiO 3 crystal. As in the
first set of experiments, the forvard scattered light is collected by a lens
placed in front of the crystal. The position of the lens is again adjusted so 4

that forward scattcrcd light within a lull cone angle of =10' is incident on
the front face of the crystal. The nmechmaical chopper is placed between
the lens and the crystal as shown in Fig. 2. The chopper apertures are
large enough to allow a full 10' co•ne of forward scattered light to pass
through them. The chopper is turned on and the angular scattering
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function of the phase conjugate reflected light is t&en measured. In

crder to normalize to the signal due to a normal mirror, the lock-in signal
is multiplied by the calibration constant (as in Fig. 5) and by the ratio of
the signals at detector 1 due to the mirror and conjugator (as in Fig. 4).
Results for the intensity distributions of the scattering from the incident
laser beam and from the beam produced by phase conjugate reflection

are shown in Fig. 6. These data are analogous to those shown in Fig. 4.
Again. the angular distribution of the scattering from the phase

conjugate -eflection shows a significantly different structure compared to

that from a normal mirror reflection. As in Fig.4, the scattering is

suopressed at small angles. but here it is also observed to be suppressed
at large scattering angles. As before, the anomalously large scattering
observed in Fig. 4 at large values of 0 is absent here.

5-
- Incident Laser Beam

S -- Phase Conjugate Reflected Beam

- .

40 65 90 115 140
Scattering Angle 0 (Degrees)

Figure 6. The scattercd intensity distribution for the incident laser
and for a phase conjugate reflection. The latter is measured using
the chopper and the lock-in (Fig. 2). Fiber radius is 19.8 nm,
wavelength is 514.5 nm. and polarization is perpendicular to the
fiber axis and parallel to the plane of incidence.
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SUMMARY

A simple physical interpretation of the suppression of the

scattering from a phase conjugate beam can be given. When the incident
light is scattered by a fiber of radius 19.8 gm. most of the scattered light
is confined to a small cone in the forward direction. Thus, phase
conjugation of light scattered into the full angle of 100 is enough to
simulate an almost ideal situation of phase conjugating all the scattered
light. After the interaction between the fiber and the phase conjugated
light the incident wave is approximately recovered: hence, the angular

distribution of the scattering from the phase conjugated beam is

suppressed.
In conclusion, we have observed that if forward scattered light is

reflected by a phase conjugator. the angular scattering it produces Is
suppressed relative to that produced upon reflection by a normal mirror.
However, quantitative relationships have not yet been obtained. This
research was supported by the Office of Naval Research. under contract
N00014-93-C-001 1.
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ABSTRACT

An improved portable high-throughput liquid-absorption air
sampler [PHTLAAS] was recently developed at Argonne National
Laboratory's Environmental Safety and Health Division for
monitoring tritium in air. This PHTLAAS is being evaluated for
use as an aerosol sampler. Respirable particulates are dispersed
in a wind tunnel and their concentrations measured in both the
sampled air and the collected particulate-enriched liquid. The
particulate-enriched liquid can be tested for biological
materials by several alternative techniques. In initial
experiments with aerosols of Bacillus subtilis var. niaer [BG]
spore agglomerates of 4 Am geometric-mean aerodynamic-mass
diameter 'with a geometric standard deviation of 1.735) dispersed
in a wind tunnel, the PHTLAAS was tested at an air sampling rate
of 230 L/min. The collection efficiency of the first tested
PHTLAAS, as measured by the standard bacteriological assay for
BG, was found to be 85(+10,-14)%. Experiments are in progress to
verify the initial results, eliminate or minimize possible
sources of error, check the reproducibility of the collection
efficiency measurements, and determine the dependence of
collection efficiency on particle size (using monodisperse
fluorescent particles in the 0.3-15 Am range], air sampling rate
[20C-250 L/min], operating conditions (temperature, relative
humidity, etc.], and geometrical features.

INTRODUCTION

A recently developed high-throughput liquid-absorption air
sampler"2 (HTfAAS] was evaluated primarily for the detection of
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analyte vapors in trace concentrations. 3 The HTLAAS comprises a
glass tube, 6 cm I.D., through which air passes at a rate of 600-
700 L/min in a swirling, hiqhly turbulent motion, which
facilitates rapid transfer of trace constituents to a liquid film
covering the inner walls of the tube and being drained from the
bottom at an average rate of 0.1-1 mL/min. The pressure drop
through the glass tube is only about 30 cm of water, as compared
with 100-260 cm in earlier large-air-volume liquid scrubbers."'

The advantages of the HTLAAS for rapid and/or ultrasensitive
detection and analysis of trace air contaminants result from (a)
the high air-sampling rate, (b) an appreciable analyte collection
efficiency (40-50%) for both vapors and aerosols, and (c) the low
volume of collected liquid absorbent. These three features
combine to reduce the lcwer detection limit (LDL] of available
analytical instrumentation by a factor of >1000 and/or to permit
faster sampling and far more rapid on-site air monitoring than
were previously practicable. For instance, LDLs of alkaloid
vapors =1:1013 by volume have been achieved using the HTLAAS
with liquid chromatography and electrochemical detection. 3

Other attractive features of the HTLAAS include its applicability
to both vapors and aerosols, applicability to most analytes, and
compatibility with most analytical devices, particularly those
geared for the detection of analytes in liquid, especially
aqueous, samples.

To determine whether the HTLAAS can also collect particles or
droplets from aerosols, a corn oil mist (0.3 to 3 Am droplets)
was produced by a Laskin nozzle. The relative concentrations of
these droplets at the sampler inlet and outlet were measured with
a Model TDA-2EL light-scattering photometer (Air Techniques.,
Inc., Baltimore, MD). The difference in the photometer readings
yielded an aerosol collection efficiency of 42-48%.1

A portable HTLAAS [PHTLAAS] was first developed for field use
with funding from the U. S. Customs Service. 6  An improved,
streamlined PHTLAAS was subsequently devised at Argonne National
Laboratory's Environmental Safety and Health Division for
monitoring tritium in air.' The streamlined PHTLAAS has a glass
tube with an I.D. of 2.7 cm and samples air at a rate of 150-250
L/min, which still permits it to reduce the LDL and/or the
sampling time for trace air contaminants of most air analyzers
(operating at sampling rates of s3 L/'min) by two or more orders
of magnitude. The PHTLAAS is made of simple and inexpensive
components. Its total weight, excluding the power pack, is onlyabout 700 g. The weight of the power pack depends on the choice
of batteries and their replacement frequency. The required power
is <40 watts. The PHTLAAS has maximum dimensions of 10 cm
diameter and about 50 cm total length.

fhe PHTLAAS is now being evaluated for use as an aerosol sampler.
Respirable particulates are dispersed in a wind tunnel and their
concentrations measured in both the sampled air and the collected
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particulate-enriched liquid. These measurements will yield the
dependencies of the sampler's collection efficiency on
particulate size [in the 0.3-15 Am range], air sampling rate [in
the range of 150-250 L/mini, other operational parameters
[initial liquid volume, sampling time, ambient temperature and
relative humidity, etc.], and sampler design.

The particulate-enriched liquid can be analyzed for biological
particles by standard biological assay techniques, by immunoassay
methods or by fluorescence detection.

EXPERIMENTAL APPROACH

To measure the efficiency of collection of an i-th species,
el, it is necessary to determine the volume of the sampled air VA
= FAt, where FA is the flow rate of the sampled air and t is the
samplinq time, the concentrations CIA = weight of i-th species
per volume of air and CXL = weight of i-th species per volume of
liquid, and the volume of the collected liquid v.. A materials
balance then yields:

f- C.LVL/ Cj~tFA ()

The liquid volume vL is measured with a graduated pipette and
the sampling time t with a timer. To measure FA, a low-rate
[0-2 L/min] flowmeter, connected to a probe hole situated 1 cm
above the glass tube, was first calibrated against a primary
standard [orifice flowmeter for 140-700 L of air/min connected
in series with the PHTLAAS, Fig. 1] and thereafter served as a
secondary standard. The problem reduced then to measuring the
concentration ratio C'L/CZA of Equation 1.

An airflcow rate of 230 L/min was used in initial experiments with
aerosols of Bacillus subtilis var. nig [BG] spore agglomerates
of 4 Am geometric-mean aerodynamic-mass diameter [with a
geometric standard deviation of 1.735, as measured by an
aerodynamic particle sizer, Model APS 3310, TSI, St. Paul, MN]
dispersed in a wind tunnel [WT). Several procedures were tested
for measuring the concentration CIA of the particulates in the
WT. Placed near the air inlet of the PHTLAAS were the following
two isokinetic probes:

PROBE AIR FLOW RATE
MATERIAL L/MIN

Plain Gelman No. 60173
Supor-450 modified
polysulfone 0.45-Mm-pore-size,
47-mm-diameter,
membrane filter 17

Packed absorbent cotton [Fig. 2] 3.8
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After a 15-minute sampling period, the membrane filter was placed
in a bottle containing 5 mL of filtered 12% saline solution,
whereas the cotton was submerged in a bottle containing 50 mL of
0.85% saline. To dislodge and disperse the collected
particulates, the bottle containing the filter was sonicated for
1 min, vortexed using a Maxi Mix II Thermolyne Vortex Mixer for 1
min, and then shaken intensely in a mechanical shaker for at
least 10 min. The cotton was vortexed and shaken in the same
way, without prior sonication. The particle concentrations from
the filter were first measured with an Elzone model 282PC
particle counter [Particle Data, Inc., Elmhurst, IL] and so were
the concentrations CIL of the particulates collected in the
liquid samples obtained with the PHTLAAS. However, particulates
emanating from the shaken filter interfered with the Elzone
measurements. In an alternative procedure, the suspensions of BG
spores from the membrane filter, the cotton, and the PHTLAAS were
subjected to successive dilutions in 0.85% saline solution and
assayed on tryptose agar using standard microbiological dilution
and plating techniques. The resulting colony counts yielded the
concentrations of viable BG spores in the original liquid
samples. This method is practically free from interferences, as
the unique appearance of BG colonies permits easy discrimination
from any bacterial contaminants. The results obtained by this
method are reported in the next section.

A third procedure for obtaining BG counts is based on an
immunoassay approach. However, the first attempt to use this
procedure yielded qualitative rather than quantitative results.

PRELIMINARY RESULTS AND THEIR DISCUSSION

The first collection efficiency measurements followed a
methodology that was based on the following assumptions:

Assumption 1: A 0.45-mm-pore-size, 47-mm-diameter,cellulose
acetate membrane filter [Metricell GN-6, Gelman Part No. 63069],
with an isokinetic intake, that had been designed and used in
previous wind tunnel [WT] experiments collects and releases
nearly 100% of any BG spores entering at its inlet.

Assumption 2: The concentration profile of particulates
within the WT's center region does not vary appreciably from
point to point.

The validity of Assumption 1 was cast into doubt when the first
two measurements yielded efficiencies of >200% and >2,000%. It
appears that the cellulose acetate filter does not release all
the spores that are retained by the membrane and that the more
recently used modified polysulfone filter may be more suitable
for the present tests. Following a suggestion made by Gail
Hatfield [ERDEC], the absorbent cotton filter of Fig. 2, that had
been reported to collect BG spores with an efficiency of
>99.95%"'9 was used as an isokinetic calibration standard in lieu
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of the membrane filter. This procedure yielded an erroneous
collection efficiency of 13±2%, most recently revised to 85(+10,-
14)% [vide infra], for a PHTLAAS of ini.rmediate [19 cm) glass
tube length operating at an air flow rate of 230 L/min.

As a rough check of the accuracy of the absorbent cotton
standard, the input rate of BG spores was compared with the
amount collected. Surprisingly, a calculation assuming that the
spores were uniformly distributed throughout the cross section of
the WT yielded an apparent collection efficiency of about 400%
for the absorbent cotton filter. This result suggested that the
above Assumption 2 may yield highly erroneous results.
Subsequent scans of the horizontal and vertical concentration
profiles in the WT revealed large point-to-point variations in
particulate concentrations, which imply that our above-cited
first collection efficiency value of 13±2% may have been in
serious error.

To minimize such errors, changes were effectuated in the aerosol
mixing chamber (near the air inlet of the WT), which have
resulted in a major improvement in the particle concentrations
profile in the test section of the tunnel. Also worked out was a
computer program that permits rapid and accurate scanning of the
concentration profiles in the test section of the WT with the aid
of a TSI Model 3755 Laser Particle Counter. The scanning was
performed within a cross section of the tunnel at a height of
12.5 cm from the base plane horizontally and at the vertical mid-
plane of the tunnel vertically. Also obtained (with a Solomat
MPM 500e Environmental Monitor] were the wind velocity profiles
at a height of 12.5 cm above the base of the tunnel test section.
The horizontal and vertical positions corresponding to relatively
small (±15%] point-to-point variations in particulate
concentrations and wind velocities were found to be in the range
of 8-23 cm (preferably 12-18 cm] from the front door of the test
section at a height of 8-18 cm (preferably 13 cm] from the base.
Therefore, subsequent measurements were performed with the
sampler inlets placed at these optimal locations.

With the improvement in the concentration profile, it was
possible to resume the collection efficiency measurements with BG
spore agglomerates. A rerun of these measurements yielded a
collection efficiency of 82(+10,-14)%. Moreover, a comparison of
the number of BG spores collected by the cotton filter with the
number expected from the rate of injection, assuming a uniform
distribution throughout the cross section of the WT, yielded 100%
agreement. These encouraging results must be verified through
several repeat runs.
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CONCLUDING REMARKS

The measured collection efficency value of 85% could have been
due mainly to the larger particle sizes in the sampled mass
distribution. Therefore, experiments are in progress to verify
the initial results, eliminate or minimize possible sources of
error, check the reproducibility of the collection efficiency
measurements, and determine the dependence of collection
efficiency on particle size [using monodisperse fluorescent
particles in the 0.3-15 Am range], air sampling rate (200-250
L/min), operating conditions (temperature, relative hamidity,
etc.), and geometrical features.
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Sufficiency of Using a Continuum of Frequencies
to Solve the

Electromagnetic Inverse Problem

"0.1. Sindoni and D. K. Cohoon

We show the possibility of using a tunable source with frequencies ranging over an
interval of frequencies to recover remotely the structure of a complex aerosol from the
scattered radiation.

I Inverse Problem

There are two approaches to the inverse scattering problem. One is to use a single
interrogating frequency but use a continuum of angles of incidence and directions of po-
larization. A second is to use one direction of propagation of the interrogating radiation
and one angle ;f polarization but use all frequencies w which lie between a smaller fre-
quency w,1 and a larger frequency w,. We show that the latter approach constitutes an
imbedding, in the sense of differential topology ([5]) of the scattering problems into th9
space of scattered electromagnetic fields for both complexes of perfect conductors and a
collection of dielectric scatterers. In Sindoni et al. ([8]) we find numerical evidence for the
use of multiple fre'quencies to characterize complex clusters of dielectric spheres even when
individual spheres in a cluster are closp enough to each other that cooperative scattering
strongly influences the scattored radiation fields.

1.1 Uniqueness of the Inverse for Perfect Conductors

The theorem which follows is adapted from a known theorem ([3], p 189).

Theorem 1.1 Let D 1 and D., be two bounded perfect conductors whose connected
components arc each diffeoynorphisins of the interior of a sphere such that for one
fixed direction and one fixed polarization of the incoming field, but for allfrequencies
w between the smaller frequency w, and the larqer frequency w•2 , the scattered electric
field far field patterns roincide. Then D1 is cqutal to D.,
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The proof is extremely simple. The electric field f satisfies

+0 (1.1.1)

where k is the free space propagation constant, denoted by k0 in the next section, which
is w•/c with w being the frequency and c denoting the vacuum speed of light. Now outside
the perfect conductor and outside D, U D2 we have 2 is equal to E9 + 2'. We let P be the
partial derivative of f with respect to k and note that taking the partial derivatives of all
terms of the Ampere Maxwell equation with respect to k implies that

curl •L. = ieocE + ikE0cf (1.1.2)

which tells us that div(F) is zero as we already know that the divergence of f and the
divergence of any curl is zero. In view of Green's theorem then we conclude that if D, and
D2 were different and if G were the complement of the union of D, and D2 and if D' were
the part of space that was not in G or in D2 which would be nonempty if there were a part
of D, that was not totally inside of D2, that then

0D.k~f I f 12 (f -df f A f ) dxdydz (1.1.3)

This will mean that E vanishes everywhere in D' and by analyticity of F this means that
f vanishes everywhere outside of the union of D, and D2 and since this means that

f = t+fl" = 0 (1.1.4)

and since f' satisfies the Silver Mueller radiation conditions at infinity that the incoming
radiation fi being equal to - E', in view of (1.1.4) also satisfies the Silver Mueller radiation
conditions ([2]). This is a contradiction since the incoming radiation, being a plane wave,
certainly does not satisfy the Silver Mueller radiation conditions.

1.2 Dielectric Scatterers

For simplicity of discussion we consider an isotropic dielectric, we suppose, following
Tai ([9]) that

L 0
where where ex,(ik Ip - q I)(122)

S ,I,(],. ,t) = Ip - q I(.22

Then [Lunrl(crl) - Go] 16 i( - q) (1..23)
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where I is the identity dyadic and 6 is the Dirac delta function, acutally a distribution with
a one point support, whose integ.'al is 1 and whose support is the origin of three dimen-
sional space. In this setting in an operator sense the integral equation of electromagnetic
scattering for a dielectric scatterer indexed by j can be expressed in the form

S = E + koTE (1.2.4)

where if 4f)(q) is the relative permittivity function describing the jth scatterer, then the
ivtegral operator for the jth scatterer is given by

IS(e4i)(q) -1 j')=(y(, q) dv(q)(1.)

where we use the fact that e(P(q) is equal to 1 outside the scatterer causing the integral
(1.2.5) to vanish outside the scattering body. The integral gives the fields outside the
scattering body and inside the scattering body if interpreted in the principal value sense.
If we suppose that we have two scatterers, scatterer I and scatterer 2, giving the same
scattered radiation, then a subtraction yields the equation

T,E I - T 2E•. = 0 (1.2.6)

A problem with using (1.2.6) directly to conclude that e$3W is equal to EM2) and that con-
sequently the two dielectric scatterers are really the same is that inside the integrals in
(1.2.6) we have the products of e•)(q) - 1 and E, for j equal to 1 and 2 instead of a single
unknown. However, now we make use of the continuum of values of k0 or w/c where w is
the frequency and c is the vacuum speed of light which means that by analytic continuation
we can extend values of k0 to zero and we note that

(7 + - i = 0(k2) (1.2.7)

as k0 goes to zero since for small values of k0 we can express the inversp as a Born serips
via the relationship

(21+-kT)' + 7-kkoT+ . (1.2.8)

which means since we can always certainly replace E, in equation (1.2.6) by

Af)=(7 + k 02Tj)f' (1.2.9)

and then uing (1.2.7) as k0 goes to zero and dividing all terms of (1.2.6) by kV and letting
k0 go to zero we derive a simpler sequence of relationshipis using the expansion (if Go in
vector spherical harmonics as in ([9]) and ([7], pp 1776 - 1783 or as in my student's Ph.D
thesis ([6]) and conclude by orthogonality that we have an infinite sequence of exl)rossiowLs

of the form J () ~(q )I~ r" I(.... )(Oq ¢),U(q) 07(1.2.10)
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where (r,, 9., Oq) is the spherical coordinate representation of the point q in the scatterer

and where the 'I(,,) will be derived from the Dyadic expansion of Go in ([91) in terms of
vector spherical harmonics. This is based upon the Cauchy integral theorem relationship

Sdk -= a.-,(1.2.11)

where each a.-, is an integral of a combination of spherical harmonics multiplied by the
difference (E41) - f42)) (q). As the spherical harmonics are complete, it will be impossible
that all these , terms are zero unless c4l)(q) is equal to 42,'(q) which will rnean that
scatterer 1 is the same as scatterer 2.
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Computer Codes for Solving the
Sphere Inversion Problem

D. K. Cohoon

This paper givs a description and listing ,oniputer code which will hl, 1) ii lok
inside a nonmagnetic layered spherical particle recover the layer thickns.s and ,,1.1-
trical properties (permnittivities) of these layers just by looking at th,- scatteri raiiatio,.1
resulting from exposing the layered spherical particle to a single plane wave el,'tromag-
netic radiation source of a single plane wave mono(:romatic polarizw,i •otir, --o that rhe,
interrogating ra 'iation hlvs (i) one frequency, (ii) one angl, of inridont,' and (iii) ony ,ni

polarization. A Levinberg-MN:irquardt algorithm is nbed for the inver~ioi

Contents

I INTRODUCTION

2 The Inverse Problem Computer Code

3 COEF .subroutine

4 COEFAS subroutine

5 DPMPAR. subrou"ne

6 EVEC or Electric Vector Determination Subroutine

7 EVCSC for Scattered Radiation

8 EVCINC for the electric veclor of the incoming "atliatt if

9 EVSP ilD) li'Aps coinmpute Mueller riatrix entries

10 ENO(JI.{M

11 M4ieller avd amplitullf- ,,cattering ixiatrix entry ,t'terinxititimi

12 NINI FVIF'I
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13 BTERAD inversion by the scattered radiations radial component
14 PROPGF - propagation constants in all layers

15 Bessel function subroutine BJYH

16 GAUSS - a volume integral of power density

17 GETEC for obtaining expansion coefficients

18 Jacobian Determination

19 FUNAL - a function that gives a expansion coefficients
20 FNBET for 3 expansion coefficients

21 SURINC - accurate surface integration routine

22 FNTST for testing SURINC

23 FUNC - a test function for minimization

24 Getting Letters and Numbers

25 Minimization routine LMDIF

26 LMDIFF driver routine for LIVDIF

27 Minimum value of an integer array

28 FUNCD - the function of sphere parameters
29 Test Function FNTIS of the Minimization Routine

30 Miminzation subroutine LMPAR

31 QRFAC - watrix factorization routine
32 QRSOLV - simltaneous solution of linear eqn1ationjs

33 Machine constants in single precision

34 PROI'P - the proilgationr constants FKN'

35 Legendre Functions

36 (CSJ1JOCI U - the, C(lWIMON block



37 MAKE FILE

38 INPUT DATA SET

39 OUTPUT DATA

40 Applicability

1INTRODUCTION

The computer code listed here solves the forward scattering problem for an N layer

sphere implementing the Mlie solution and then performs validating checks and solves thle

inverse scattering problem by considering that the output of the Mie solution program

which is the set of expansion coefficients representing the scattered radiation is a vector

valued function and minimizing the difference betwveen these values and the measurod or

otherwise determined expansion coefficients representing the radiation scat tered from thp

sphere with a priori unknown properties.
It is therefore essential to be sure that there is no error of any significance inl tile

computer solution of the forward scattering problem. The validity of thle answvers ar'e

checked by comparing tangential components of electric and magnetic vectors on opposil e

sides of layer boundries. We check the e-nergy balance by computing the total energ;y

entering the sphere minus the total energy scattered away in two different ways. The

standard method, which is the method of computing the total absorbed power for an

aerosol particle of any shape, is the integration of the Poytitingr vector dotted with rho

inward directed nor-mal over the surface of thle sphere. The second method uses rho loral

concept of power per unit volume at any point inl any layer and carries out the volltuio

integral of this power per unit volume over all the layers of the sphiere. These tworeus

must be the same if thle Mlie solution program is working correctly. Since thiese romlpariscons

are made with the vector spherical harmonirq, this is not quite enonigh. WO also' niliko suire

that the electric vector of tile incoming radiationi which is og;ivvn b)y a !simipli forniula ill

Cartesian coordinates of the form

E'= .ox( A, - Iwt)

is accurately rvprvso-nte-d by tithe expre,.sion iii vector sphevrical liriionmics f )r r~li. iiiiiiier

A o)f v(ector spherical harmonics that. we itre using oil titlie iiir-fac Of thle~li'ri Tlitii:. 1)v

tile ufliqwwnPs theoremi ini ([11) we, are -itire' thiat thev fo rwarud scititc rilg Pm) 'l'1i in lnv, 1 -f-n

corrfectly solved by t-lif conxipwvtr ji1 ~griani. Ne-xt we l''r rnii Iiiw' llir niiiti ix (elit ries andl

t it,,C~ sttrrin.- anipJlit id'' initrix. If r it( nii's, iii riiivaiirriniiii is r0 j)fI sent' 41 it-; a1 itilt ipi''

o'f highwir ord,,r vic(to~r %Jphirical 1wrinoijics, we show vii t the, coniinteri Ii. r)iogIl t hat inner

lrdriItiet with 1i lwfr ',rdl-r vir(ti r s))hitriicl iiarniii iis intrrgratin~ i viz tit( uiiir t" i~irfr 4

of thil ~ur iii1r~iiifit 'ti jif r1-1v1,r'ui to iwarly flill ruu"UP1iui'' 11Y'ir~ L G ~iu
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quadrature over the surface of the sphere or over a surrounding sphere that is concentric
with the scattering sphere. Finally, we use a Levinberg Marquardt algorithm to recover
the sphere properties from the scattered radiation.

This routine hypothesizes a sphere with a number of layers and radii of delimiting
spheres, and electromaguetic properties of these ayers, solves the forward problem along a
search path determined by the Levinberg Marquardt algorithm until the calculated expan-
sion coefficient.- and the expansion coefficients that represent the electromagnetic radiation
scattered from the real sphere are as close as possible. When INFO = 2 or INFO = 4 is
printed in the output, this means that the minimization procedure has been successful
usually to all of the decimal places printed. Ideally, measurement noise should be removed
before using this program to recover the sphere properties.

2 The Inverse Problem Computer Code

The following is a computer code that tests various aspects of procedures to recover the
properties of scattering spheres from the scattered electromagnetic fields and a knowledge
of the incoming field.

C

PROGRAM CSM
C ELECTROMAGNETIC ENERGY DEPOSITION IN A CONCENITRIC SPHERE.
C

IMPLICIT REAL*8 (A-H, O-Z)
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COMPLEX*16 EFRADI,ETI{ETI,EPHII,CEXOLD,CI,ZOLD,
I ERADIN,ETHEIN,EPHIIN,ALPNM,BETMM

c COMPLEX*i6 FKP(1O), CEX, ANP(1000), BNP(1000), ALPNP(1000),
1 BETNP(1000), BJNP(B00), BHNP(500), Z

c COMMON /COEFF/ANP, BNP, ALPNP, BETNP
c COMMON FKP, BJNP, BHNP, CEX, BDP, P, DP, SIGP, EO, TIME, R,

1 THETA, PHI, STOPR, NC, NORG, NI4IN
INCLUDE 'CSMCDM.f'
EXTERLNAL FUNCD ,FNT18
COMMON /PRICOM/IPRINT,IENTR
COMMON /FNCOt4/IPRNDX
DIMENSION SBDP(9),XARRAY(18),FVEC(20) ,IWK(i8),

1 WK(470)
c M -20
c MDB4 -5

c N -18
c LWA = M*N+S*N +M

c are used in CALL FUNG
IPRNDX = 1234
ZERO O.DO
ONE I .DO
CI -DCMPLX(ZERO,ONE)

IPESIN = 0
c This last statement initializes a printing index

CALL ERRSET(208, 0, -1, 1) WHAT DOES THIS DO?

C OPEN(5,FILE='C:\DATA\CSM.DAT')
c OPEN(6,FILE='C:\DATA\CSMOUT1.DAT')
c OPEN(7,FILE='C: \DATA\CSMBNP .1AT')

OPEN(3,FILE='ICSM.d')

OPEN(26,FILE='CCSMOUT1 .DAT' ,STATUS='UIIKNOWN')

OPEN(7,FILE='CSMCMBNP.DAT' ,ST'ATUS='UI;KUODWNI)

OPEN(16,FILE='OCOMPDEN.DAT' ,STATUS-'IJNKNOWN')
OPEN(70,FILE-'O-Mll.DAT' ,STATUS'IUNKNOWN')
OPEN(71,FILE-'O-MI2.DAT' ,STATUS-'UN1KNOWNI')

OPEN(74,FILE='O-M33.DAT' ,STATUS='UIIKTIOWN')

OPEN(75,FILE-'O-M34.DAT' ,STATUS'lUNKNOWN')

OPEUI(77,FILE-'O-M43.DAT' ,STATUS='1JINKOWN')
OPEN(76,FILE='GAIJSSPRI DAT' ,STATUS='UNKNOWNJ')

OPEIIC37,FILE='ALPHACF.DAT' ,STATUS='IJNKUU(WN'1)

OPEII(38,FILE='BETACF.DAT' ,STATUSA'UJK140W'11')

REWIND (37)

REWIIID(38)
REWIIND(16)



MEIND (3)
REWIND(26)
REWIND(7)
REWIND (70)
REWIND(71)
REWIND(74)
REWIND (75)
REWIND (77)
REWINDC76)
IPRIflT = 0
IENTR - 0
IPRDIA - 0
PIE-3. 141592653589793DO
RADI18O. DO/PIE
EPSO=8. 85416D- 12

VEL=2.997924562D8
VELOCI = VEL

*READ IN CONTROL PARAMETERS
5 READ(3,1O,END=1110) FREQ. EO, TIME, STOPR, NORG, NOCR

WRITE(*,*)FR'EQ,' - FREQ'
WRITE(*,*)EO,,' - EO'

WRITE(*,*)TIME,' - TIME'
WRITE(*,*)STOPR,l - STOPR'
WRITE(*,*)NOCR,' - NOCH'
WRITE(16,*)FREQ,' - FREW'
WRITE(16,*)ED,' = EO'
WRITE(16,*)TIME,' - TIME'
WRITE(16,*)STOPR,' z STOPR'
WRLITE(16,*)NOCR,' - NOCR'

10 FORMAT(4El0.O, 215)
* COMPUTE COMPLEX TIME VARIATION

OMEGA-2.D6*PIE*FREQ
ARCG-- OMEGA*TIME
CEX-DCMPLX(COS(ARG) ,DSIN(ARG))

* READ DIELECTRIC PROPERTY PARAMETERS
READ(3,20) (EPSP(I), SIGP(I), I-l,NORG)

20 FORMAT(6El0.O)
* COMPUTE COMPLEX PROPAGATION CONSTANT

FACl-OMEGA/VEL
WRlTE(*,'.)fORG,' NORG'
DO 30 I-I INORO

FAC2-EPSP(I)/2 .DO
FAC3=SQRTC1.DO+(1,DO/(EPSO.OMFCA)*-2)*(SIGP(I)/EPSP(I))**2)

182



REKP-FACI*SQRT(FAC2*(FAC3*i .DO))
FIMKP-FAC1*SQRT(FAC2. (FAC3-1. Do))
FKP (I) =DCMPLX (REKP ,FIMXP)
WRITE(26,*)'FKP(l,I,') - ',FKP(I)

30 CONTINUE
4w FKP(NORG+1)-DCMPLX(FAC1 O.DO)

WRITE(26,*)' FKP(',NORtG+I,') -',FKP(NORG+i)
WRITE(*,*)NORG4.i,' - NORG*1'
WRITE(*,*)FKP(NORG+1),' -FKP(NORG+1)3

4 c READ RADII OF SURFACE BOUNDARIES
READ(3,20) CSBDPCI), I-1,NORG)
DO 35 Iinl, NORG

WRITE(16,*)SBDPCI),' - LAYER BOUNDARY no ',I
BDP(I)-SBDP(I)/i .D2

35 CONTINUE
* PRINTr OUT TITLE AND BASIC INPUT DATA

WRITE(26,40) FREQ, EO, TIME, NORG
40 FORMAT(' ELECTROMAGNETIC ENERGY DEPOSITION IN A CONCENTRIC',

1 1 SPHERE.'/' *** SPHERICAL BESSEL FUNCTIONS CALCULATED '

2 'USING SUBROUTINE CBSSLJ ***',/

3 ' FREQUENCY -',F9.2,' MHZ FIELD '

4 'STRENGTH -1,F7.2.' V/M TIME =',F7.2,' SEC'/,
5 ' NUMBER ',

5 'OF REGIONS u',13)
WRITE(26,41) (EPSP(I), I-i,NORG)

41 FORMAT(' RELATIVE DIELECTRIC CONSTANTS -',9(F7.2,2X))
WRITE(26,42) (SIGP(I), I-1,NORG)

42 FORMAT(' CONDUCTIVITIES (MiOM) -'39(F7.3,2X))
WRITE(26,43) (SEDP(l), Iuei,NORG)

43 FORMAT(' SURFACE BOUNDARIES (CM) =',9(F7.3,2X))
* COMPUTE SERIES EXPANSION COEFFICIENTS FOR ELECTRIC FIELDS

CALL PROPO
CALL COEF

NC - N?41N
NORGPO - NORG+l
DO 3801 IR - 1,NORGPO
NSUM -(IR-l)*NMIN
WRITE(37,3788) IR,NORG ,NMIN ,NSUTI

WRITE(38,3788) IR,NORG ,NMIN:NSUNM
DO 3701 IC - 1,NMIN
IRMTMP a (IR-01)*rMIfl + IC
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WRITE(37,*)ALPNP((IR-i)*NMIN+lI,),' - ALPNP(IR,',IC,')'
C

WRITE(38,*)BETNP((IR-1)O*IIMIN+IC),' - BETNP(IR.,'IC,')'
3701 CONTINUE
3788 FORMAT(I5,' - IR',I5,' = NORG',15,' NMINI,I5,' = NSUM')

3801 CONTINUE
WRITE(76,*)NC,' - NC - NMIN after CALL COEF'

C CALL COEF(ANP, BNP, ALPNP, BETNP) expansion coefficients
c are passed through common

WRITE(*,*)' We have just completed call to COEF1
DO 873 LLL=1,NMIN

WRITE(7,874) LLL, BNP(LLL)
874 FORMAT(' LU. = ',13,3X,'BNP =(1,E14.7,',1,E14.7,')')
873 CONTINUE

c CLOSE(7)
c CLOSE(S)
c JJ-3
c IF (JJ.EQ.3) THEN
c STOP
c ENDIF

WRITE(16,*)NOCR,' - NOCR'
WRITE(16,*)NMIN,' - NMIN'

c
WRITE(76,*s)IOCR,' NOCR'
WRITE(16,45)

45 FORMAT('O')
WRITE(16,5401)

5401 FORMAT(' NREG'J,1 NCC',6x,'SAVR',4x,'THETA',6x,'PHID',
1' Power Density')
WB.ITE(*,*)NOCR,' - NOCRI
DO 70 I=1,NOCR
WRITE(*,*)I,' s no I of NOCR - 'PNOCR

"* READ DEFINING CHARACTERISTICS OF INTERIOR POINTS AT WHICH
"* ABSORBED-POWER DENSITIES ARE TO BE COMPUTED.
c READ(3,50) NAEG, R, THETAD, PHID

WRITE.(*,*)' Carrying out READ(3,*)NP.EG,R,Th1ETAD,PHIDW
READ(3,*) NREG, R, TMETAD, PIIID

50 FORMAT(!5,3E10.3)

SAVR-R
R=R/1 .D2
THETA -ThETAD /RA D
PHI=PHID/RAD
Z-FKP (NREG) *R
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c WRITE(*,*)' We are about to CALL BJYH'
NCOLD - NMIN
NCC xNMIN
CALL BJYH(BJNP, BHNP, Z, NCC, STOPR)
WRI-TE(76,*)NCC,' NCC after CALL BJYHI

4w NCC - NCC-2
IF (NCC.GT.NMIN) NCCmNIIN
CALL PL(THETA, NMIN, P, DP)

* ABSORBED-POWER DENSITY AT GIVEN POINT INTERIOR TO P-in REGION
NC - NCC
CALL EVEC(NREG, PD)
NC = NMIN

c ,Z) is passed through COMMThON
PD-. 5D0*SIGP (NREG) *PD

*PRINT OUT PARTICULARS OF INTERIOR POINT OF REGION P
C WRITE(6,60) NREG, SAVR, THETAD, PHID, PD
c 60 FORMIAT(' REGION',12,1 INTR. POINT: RADIUS =',F7.3,1 CM THETA')
c 1 I -',F7.2,' DEG PHI =',F7.2,1 DEG ABSORBED POWER DENSITY =',

c 2 F12.8,1 W/M**3')
WRITE(16,60);IREG ,NCC, SAVR,THETAD ,PHID,PD

60 FORMAT(215,ElO.3,EIO.3,ElO.3,IPDIS.7)
70 CONTINUE

NN=NORG*NMIN
FAC=2 .DO*PIE/ (FAC1*FAC1)
QS=0.DO
QT=0,DO
DO 90 N-i ,NMIN

FACNM-.UO*N+1 .DO
QT.=QT4FACN*REAL(ALPNP(NN+N)+BETNP(CUN+N))
QS-QS+FACN*(ABSO(ALPNPCHN+N))**2+ABS(BETmýl'(IN+lJ) )**2)

90 CONTINUE
QA-FAC*(ABS(QT) -QS)

* TOTAL ABSORBED POWER

TOTPOW-2. 6544 1D-3*EO**2*QA/2 .DO

* AVERAGE ABSORBED POWER DENSITY
PAVG=TOTPOW/ (4. DO*PIE*BDP (NORG) **3/3 .DO)

* PRINT AVERAGE ABSORBED-PCWER DENISITY AND TOTAL ABSORBED POWER

WRITE(16, 100)PAVG, TOTPOW
WMITE(*, i0O)PAVG ,TOTPOW

100 FOPJIAT('O' ,9X,'AVERAGE ABSORBED-POWER DENSITY =,I?D13.5,' W/M*'*3'
1 /'0',9X,'TOTAL ABSORBED POWER =',D13.5,' WATT.')

c*****GOTO 5**#*****original code stopped riere*****.
110 CONTINUE
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WRITE(*,*)' About to call GAUSS'
LSTART I 1
TPGAU GAUSS(LSTART)
WRITE(16,*)TPGAU,' total absorbed power by vol integration'
WRITE(*,*)TPGAU,' total absorbed power by vol integration'
WRITE(*,*)' TOTPOW a ',TOTPOW
WRITE(*,*)' completed the call to 4AUSS'

c We are about to test the EVECSC.f routine
R BDP(NORG)
NP NOhG+1
PI * 3.14159265358979323DO

THETA - PI/3.DO
PHI - PI/4.DO
Z a FKP(NORG+I)*R
ZOLD=Z
CALL BJYH(BJNP,BHNP,Z,NCSTOPR)
NC - NC-2
IF(0C,GT.NNIN) THEN

NC a NMIN
ENDIF

C

CALL PL(THETA,NC,P,DP)
CALL EVEC(NP,PD)
CALL EVCSC(NP,PDSC)
CALL EVCINC(NP,PDIN,ERADIN,ETHEIN,EPHIIN)

c We have called PROPI and COEF prior to entering
c this block

c e-x - sin(cheta)cos(phi)e.r + cos(theta)cos(phi)e.theta -

c sin(theta)e-phi
c which means that the representation of the incident field
c which is polarized in the direction of the positive x axis
c in sphesical coordinates is given by
c ERADI - SIN(THETA)-COS(PHI)
c ETHETI - COS(THETA)*SIN(PHI)
c EPHII - SIN(THETA)

CEXOLD a CEX

Z = ZOLD
CEX - CEX*EXP(+CI*Z*COS(THETA))

c In this code we follow Stratton and use an
c exp(-i omega t) time dependence.

ERADI = SI1 (THETA)*COS(PHI)*EO0CEX
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ETHETI = COS(THETA)*COS(PHI)*EO*CEX
EPHII = -SIN(PHI)*EO*CEX
WRITE(*,*)ERADI,' = ERADI(E radial exact by CSM.f)'
WRITE(*,*)ERADIN, ERADIN (E radial in by EVCINC.f)'
WRITE(*,*)ERADSC,' ERADSC (E radial scat from EVCSC.f)'
WRITE(*,*)ETHETI,' ETHETI (E theta in exact by CSM.f)'
WRITE(*,*)ETHEIN,' ETHEIN (E theta in from EVCINC)'
WPITE(*,*)ETHESC,' ETHESC (E theta scat from EVCSC.f)'

C

WRITE(*,*)EPHII,' - EPHII (E phi exact formula)'
WRITE(*,*)EPHIIN,' = EPHILN (E phi in from EVCINC.f)'
WRITE(*,,)EPHISC,' = EPHISC (E phi scat from EVCSC.f)'
CEX = CEXOLD
WRITE(*,*)ERADI+ERADSC,' - ERADI+ERADSC'
WRITE(*,*)ERAD,' - ERAD'

WRITE(*,*)ETHETI+ETHESC,' - ETHETI+ETHESC'
WRITE(*,*)ETHETA,' - ETHETA'

C

WRITE(*,*)EPHII+EPHISC,' - EPHII+EPHISC'
WRITE(*,*)EPHI,' - EPHI'
IFARMU - 1
R2MU = IO.DO*BDP(NORG)

c We are about to calculate Mueller matrix entries at a point
c 10 radii out from the outer radius of the sphere

WRIIE(-,-)' We are about to call MMEVEI'
WRITE(*,v)CEX,' - CEX before CALL MMEVEI'
CALL MMEVEI(PHID,IFARKU,R2MU)
WRITE(*,,)' We have finished CALL MMEVEI'

c We are calling modular amplitude scattering matrix subroutine
c
c We are now getting the expansion coefficients of the scattered
c radiation numerically and making a comparison with the exact
c formula based on making use of the boundary conditions which
c require that the tangential components of the electric and
c magnetic vectors be continuous across the boundary.

NVAL = 2
RADIUS - 1.ODO*BDP(NORG)
WRITE(*,8961)

8961 FORMAT(' Layer no',8x,' radius',5x,' thickness')
DO 8963 IL - 1,NORG
IF(IL.EQ.1) THENI

THICKCIL) = O.DO
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ELSE
THICK(IL) =BDP(IL)-BDP(IL-1)

END IF
WRITE(*,8962)IL,BDP(IL) ,THICK.(IL)

8962 FORJLAT(19, 1PD15.7,D15.7)
8963 CONTINUE
c Calling the routine to get the expansion coefficients

c of the scattered radiation numerically.
CALL GETEC(RADIUS,ALPNM, BETUM) 1

c We are now going to check out our ability to create a function

c which produces the expansion coefficients of the scattered radiation

M - 20
MDB4 - 5

N - 18
c are used in CALL FUNC

NORGF - NORO
PRACR = 1.OOOOOODO
FRACEP - 1.OOOOODO
FRACSG - 1.000001)0

8754 FORMAT(lPD15.7,2DI5.7)
DO 8761 1 - 1,NORG

XAR~RAY(I = FRACR
XARRAY(MORG+I) aFRACEP
XARRAYC2*NORG+I) =FRACSG

8761 CONTINUE
CALL FUIJC(M,N,XARRAY,FVEC, TFLAG)

WRITE(*,*), Test of subroutine FUNCI
WRITEf* ,8758)

8758 FOR.MAT(8x.'FVEC(I)',lx,'ALPFN or BETFU',
1 lx,'ALPNP or BETNP')
DO 8762 1 - 1,MDB4
WRITE(*,8763)FVEC(I) ,PLEAL(ALzFN(1ORGF*NMINF+I)),
1 REAL(ALPNP(NORGF*NMINF+I))
WRITE('e,8763)FVEC(MDB4s.I) ,DIM~AGCALPFN(NORGF*NMIýIr.*I)) A

I DIMAG(ALPNTP(NOBGF*NMI1IF+I))
WRITE(*,8763)FVEC(2*MDB4+I),REAL(BEFCN(NORGF*NmINF4-I)),
1 REAL(BETIP (NORGF*t1MIfF+ I))
WRITE(*,8763)FVECC3*MDB4+I) ,DIMAC,(BETFN(NORGF*NMINF+I)),
1 DINAG(BETNP(NORGF*NMINF+I))

8763 FORMATC1PD15.7,DIS.7,D15.7)
8762 CON1TINUE



c We are testing our ability to use LMDIFF to recovier

c values of a function which cause the function to be

c minimized. The function is called FNT18

N - 18

M -20

LSCRIP - M*N+5*N+M

WRITE(*,*)LSCRIP,' M*N+S*N+M for FNT18'
EPSL - 1.D-9
TOLL = I.D-8

FACTOR = IMD

C

READ(3, 7732)TMFA

WRITE(*,*)' Calling LMDIFF with T18FRA=',T18FRA

IF((Tl8FRA.LE.O.DO).OR.(Tl8FRA.GT.2.DO)) THEN

WRITE(*,*)' Stopping program in CSM.f'

STOP

ENDIF

C

7732 FORMAT(1PD15.7)

DO 7733 IX-1,N

XARRAY(IX) - FLOAT(IX)*T18FRA

7733 CONTI4NUE

ICALLF - 0

WRITE(*,*)FACTOR,' - FACTOR before CALL LMDIFF with FNT18'

CALL LMDIFF(FNT18,M,N,XARhRAY,FVEC,EPSL,TOLL,

1 INFO,IWK,WK ,LSCRIP ,FACTOR)
WRITE(*,*)FACTOR,' FACTOR after CALL LMIDIFF with FNT18)

WRITE(*,*)ICALLF,' no of function calls to FNT18'

WRITE(*,*)INFO,1 = INFO after call LI4DIFF with FN~T18'

WRITE(* ,7290)

7290 FORMAT(6x,'XARRAY(I)',5x,'XARRAY(NORG+,)',

I 3x, 'XARRAY(2*NORG+I)')
DO 7295 I - 1,NORG

C

WRITE(*,7291)XARRAY(I),XARRAY(NORG+I),XARRAY(2*NORG+I)

7291 FORMAT(1PD1S .7,4,x,D15.7,4x,D1E .7)

7295 CONTINUE

WRITE(*,*)' Printing out FVEC values from FNT181

MDB4 = M/4

IF(MDB4*4 .EQ .M) THEN

DO 7298 IM = 1,MDB4
WRITE(*,7297)FVEC(IM) ,FVEC(MDB4-'Im) ,FVEC(2*MDB4+IM),

1 FVEC(3*MDB4+IM)
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7297 FORMAT(1PD15.7,3D15.7)
7298 CONTINUE

ENDIF

c We are now testing our ability to recover the

c original values of radii and electromagnetic properties

C READ from 3 values of FRAC., FRACEP, FRACSG
READ(3,8754)FRACR,FRACEP,FRACSG

C

WRITE(*,*)' FRACR,FRACEP,FRACSG

WRITE(*,8754)FRACRFRACEP,FRACSG
DO 8798 I = lNORG

XARRAY(I) - FRACR
XAPRAY(NORG+I) = FRACEP

XARRAY(2*NORG+I)=FRACSG
8798 CONTINUE

N = 18
M - 20
LSCRIP = M-N+5*N+M

MDB4 = 5
WRITE(*,*)LSCRIP,' = WA array dimension'
IF(LSCRIP.GT.470) THEN

WRITE(*,*)LSCRIP,' = WA length is too small'

WRITE(16,*)LSCRIP,' = WA length is too small'
WRITE(*,*)' Stopping before CALL LMDIFF in CSM.f'
WRITE(16,*)' Stopping before CALL LMDIFF in CSM.f'

STOP

ENDIF

EPSL= 1.D-9
TOLL= 1.D-5

c*s******reading in EPSL and TOLL from the data set

READ(3,8767)EPSL,TOLL,FACTOR
8767 FORMAT(1PD15.7,D15.7,D15.7)

WRITE(*,8768)EPSL,TOLL
8768 FORMAT(1PD15.7,D15.7,' = EPSLTOLLI)

WRITE(*,8769)FACTOR

8769 FOPAT(1PDIS.7,' = FACTOR just before call LMDIFF in CSM.f')
ICALLF = 0
WRITE(*,*)' About to CALL LMDIFF(FUNCD,M,N,XARRAY,FVEC,

IPRIIDX = 1234

c This will cause the printing of the initial values
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c of EPSP,SIGP, and BDP in FU1ICD
CALL LMDIFF(FUNCD,M,N,XARRAY,FVEC,EPSL,TOLL,
I INFO, IWK,WKILSCRIP,FACTOR)

WRITE(*,*)FACTOR,' - FACTOR after CALL LMDIFF with FUNCD'
41 WRITEC*,*)ICALLF,' no of function calls'

WRITE(16,*)ICALLF,,'- no of function calls'
WRITE(*,*), Completed the call to LMDIFF in CSM.f)

WRITE(*,*)INFO,' = INFO after call LMDIFF'
W WRITE(16,*)' Completed the call to LMDIFF in CSM.f'

WRITE(16,*)INFO,' - INFO after call LMDIFF'

DO 8872 I = 1,NORGF
IF(I.EQ.1) THEN

WRIT.E(*,8869)XARRAY(I)*BDP(I) ,BDP(I)
WRITE(16,8869)XARRAY(I)*BDP(I) ,BDP(I)

ELSE

WRITE(*,8869)BDPFN(I-.1)+XARRAY(I)*THICKF(I),
1 BDP(I-1)+THICK(I)

WRITE(16,8869)BDPFN(I-1)+XARRAY(%I)*THICKF(I),
1 BDP(I-1)+THICK(I)
ENDIF

8869 FORMAT(IPD15.7,D15.7,' - radii (approx and orig)')
WRITE(*,8870)XARRAY(NORG+I)*EPSP(I) ,EPSP(I)
WRITE(16,8870)XARPbAY(NORG+I)*EPSP(%I) ,EPSP(I)

8870 ."0RMAT(1PD15.7,D15.7,' EPS (approx and orig)')
WRITE(*,8871)XARRAY(2*NORG+I)*SIGP(I),SIGP(I)
WRITE(iS ,8871)XARRAY(2*NORG+I) *SIGP(I) ,SIGP(I)

8871 FORMAT(lPD15.7,D15.7,' - COND (approx and orig)')
8872 CONTINUE

WRITE(*,*)' Printing out FVEC values from kUNCD'
MDB4 - M/4

IFO.TDB4*4.EQ.M) THEN
DO 9298 IM = 1,MDB4
WRITE('s,9297)FVEC(IM) ,FVEC(MDB4+IM) ,FVEC(2*14DB4+IM),

1 FVEC(%3*MDB4+IM)

9297 FORMAT(1PD15.7,3D15.7)
9298 CONTINUE

ENDIF
IF(MDB4*4.NE.M) THEN

DO 8883 I - 1,M
WRITE(* ,8881)FVEC(I) ,I
WRITE(16,8881)FVEC(I) ,I
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8881 FORMAT(tPD15.7,' = FVEC(',IS,')')
8883 CONTINUE

ENDIF
GOTO 5

1110 CONTINUE
CLOSE(UNIT=16)
CLOSE(UNIT-26)
CLOSE(UNIT=7)
CLOSE(UNIT=3)
CLOSE(UNIT=70)
CLOSE(UNIT=71)
CLOSE(UNIT=74)
CLOSE(UNIT=75)
CLOSE(UNIT-77)
CLOSE(UNIT=76)
STOP
END

This is the end of the driver program.

3 COEF subroutine

The next subroutine enables us to determine the expansion coefficients of the Ple'rromag-
netic field. The variables ALPNP and BETNP are mulipliers of outgoing sphl'rical waves.
while ANP and BNP are multipliers if spherical waves converging towards rhe crlnrer of
the sphere.

SUBROUTINE COEF
c SUBROUTINE COEF(ANP,BNP,ALPNP,BETNP) exp coefficients passed
c through common CSMCOM,f
* GENERATE EXPANSION COEFFICIENTS

IMPLICIT REAL*8 (A-H, O-Z)

c Several variables are passed through CSMCOM.J the common
c These include FKP(NLAYPO), the propgagation constants
c ANP(NLAYPO*NZ)
c BNP(NLAYPO*NZ)
c ALPNP(NLAYPO*NZ)
c BETNP(NLAYPO*NZ)
c BJNP(NZ)
c BHNP(NZ)
c and CEX,Z (the Bessel function argument),BDP(NLAYPO), the
c layer radii(meters),Z = FKP(J)*BDP(J),EPSP(NLAYER),
c SIGP(NLAYER) (conductivity in mhos per meter), STOPR
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c

COMPLEX* 16
1 BJHP1(1000),
2 BJHP2(I000), SJNP1(500). DELNP, SNTi1, SNT12, SNT21,
3 SNT22, TNT11, TNT12. TNT2i, TNT22, ETAPI, ETAP2,
4 ZEPI, ZEP2, SNPII, SNP12, SNP21, SNP22, TNPII, TNP12,
5 TNP21, TNP22, DELI, DEL2, SHNPI(500), RATIO,
6 DELNPE, CI, ZTEMP ,ZPLUS,DELEXA
COMPLEX*16 DELTAA(11)

c COMMON FKP, BJNP, BHNP, CEX, BDP, P, DP, SIGP, EO, TIME, R,
c 1 THETA, PHI, STOPR, NC, NORG, NMIN

INCLUDE 'CSMCOM.f'
c DIMENSION NTER(10), BDP(9), SIGP(9), P(101), DP(500)

DIMENSION NTER(I0)
*COMPUTE COEFICTENT!! ý.N1, ENI, ANN, BNN, ALPN1, BETN1, ALPNIJ, & BETIIIJ

DATA J.JK/O/

ONE z I-DO
ZERO - .DO
JOL.D - 0
CI - CMPLX(ZERO,ONE)
Ni -O
N2=0
IPRINT -0
IPSET2 -0
IPSET3 a 0
IPSET4 a0
JOLJ)I a 0
JOLD2 - 0
IF(NORG.GT. 10) THENI

WRITE(*,1007)
1007 FORMAT(' A value of NORG 1 ,15, 1 was entered'!

1' We are stopping the program in COEF')
STOP

ENDIF
NORGP1 a NORG 1
WRITE(*,*)FKP(NORGPI),' = FKF~NORG+1) in COEF'
DO 300 NR - 1,NORG

c At this stage we have computed all the
c values of FKP(NR) and we now .',ish to compute
c the Wronskia~ns

DELTAA(NR) = CI*(FKP(NR)*BDP(NlR))**(-2)
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WRITE(*, 3001)NR,DELTAA(NR)
3001 FORMAT(' DELTAA(',IS,I) - ',2D20.10)
300 CONTINUE

DO 15 NR-1, NORG
Z=FKPCNJO sBDP(NR)
ZPLUS - FKP(NR+1)*BDP(NR)
CALL BJYHCBJNP, BHNP, Z, N, STOPR)
DO 5 Inl,N
SJNP1(I)-BJNP(I)
SHNP1(I)-BHNP(I)j
5 CONTINUE

Z=FKP(NR. ) *BDP (NR)
CALL BJYfl(BJNP, BI{NP, Z, NN, STOPR)
NMIN=MINO (N, NN)
NTER(NR) NMIN
N2uN2+NMIN
DO 10 I=l, NMIN
BJHP1 (N1+I)-SJNPl (I)
BJHP1 CN2+I) -SHUP1 I)
BJHP2(N1+I)mBJNP(I)
BJHP2(N2.I)-BHNP(I)
10 CONTINUE

N1=N1+2*NMIN
N2mN2+NMIN

15 CONTINUE
NMIN-MINNCNTEP, NOIRG)
MMIN-NMIN- 2
DO 17 I-1,NIIIN

ALPNP(I)-DCMPLX(0.DO, 0.DO)
BETNP(I)-DCMPLX(O.DO, 0.DO)

17 CONTINUE
NSUM=NORG*NMIN
DO 30 I-1, NMIN

.13-0
KK=0

112u2*1+1
SIT11=DCMPLXC1.DO. O.DO)
SNTl2.=TCMPLX(0.D0, 0.DO)
SNT2 1=SNT1 2
SNT22=Smrl 1
TNT1 1=SNT1 1
TNT12=SNT12
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TNT21=SNT12
TNT22=SNT11
DO 27 Jul, NORG

ZPLUS - FKP(1+1)*BDP(J)
Z - FKP(J)*BDP(J)
KK-KK+NTE.R(3)
ETAPIu(III*BJHPi (JJ+1)-IsBJHPI (J3+I+2)) /112
ETAP2-(II1*BJHP2(JJ+I) -I*BJHP2(JJ+I+2) )/II2
ZEPl.(II1*BJHPI(KK+I) -I*BJHP1(KK+I+2))/112
ZEP2-(II1*BJHP2(KK+I) =I*BJH-P2(KK+I+2) )/112

c DELNP=BJHPI(JJ+I+1)*ZEPl-BJHPIý(KK+I+1)*ETAPI
DEIJIPE =CI*(FKP(J)*BDP(J))**(-2)
c IF(IPRINT.LT.14) THEN
cIPRINT - IPRINT+l

c WRITE(*,*)DELNP,' DELNP'
c WRITE(*,*)DELNPE.' =DELNPE'

c ENDIF
DELNP - DELNPE
RATIO-FKP(J+1) /FKP(J)
SNP11=(ZEPIBJI{P2(JJ+I+1)-RATIO*BJHp1(KK+I+1)*ETAP2)/DELNP
SNP12C(ZEP1*BJHP2(KK+I'+l)-RATItJ*BJHP1(KK+1+1)*ZEP2)/DELNP
SNP21=(RATIO*BJI{P1(JJ+I.1)sETAP2-ETAPl;BJHP2(JJ+I+1) )/DELNP
SNP22-(RATIO*BJHP1(JJ+I+1)*ZEI'2-ETAP1*BJHP2(KK+I+1))/DELNP
ZTEMP=SNT1 1
SNT11-SNT1 1*SNP1II+SNT12*SNP21
SNT12=ZTEMP*SNP12+SNT 12*SNP22
ZTEMP=SNT2 1
SNT21=SNT21*SNP1 1+SNT22*SNP21
SNT22=ZTEMP*SNP 12+SNT22*SNP22
TNP11-(RATIO*ZEP1*BJHP2(JJ+I+1)-BJHP1(KK+I+1)*ETAP2)/DELNP
TNP12-(RATIO*ZEPI*BJHP2(KK+I+1)-BJHP1(KK+I+I)*ZEP2)/DELNP
TNP21=(BJHPI(JJ+I+1)*ETAP2-RATIO*ETAPI*BJHP2(JJ.4I+1))/DELNP
TNP22-(BJHP1(33.I+1)*ZEP2-RATIO*ETAP1*BJHP2(KK+I+1))/DELNP
IF (JJK.EQ.O) THEN
WRITE(7,*)' I, RATIO, ZEP1, DELNP, ETAP2'
WRITE(7,*)ZPLUS/Z,' = ZPLUS/Z'
JJ3K-2

ENDIF
IF (I.LT.6) THEN
WRITE(7,759) I, RATIO, ZEP1, DELNP, ')2

759 FORMAT('I = ',13,2X,4(1(',EI2.5,',',El2.5,')',2X))
L14DIF
ZTEMP=TNT1 I
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TNTI 1-TNT1 1*TNP1i+TNT12*TNP21
TtIT12-ZTEMP*TNP12+TNT1 2*TNP22

ZTEMPuTUT2 1
TNT21vsTNT2 1*TNP1 1+TNT22*TNP21
TNT22-ZTE.MP*TNP12+TNT22*TNP22
JJ-JJ.2*NTER(J)

KK-KK+NrER%'J)
27 CONTINUE

ANP(I)-SNTI 1- (SNT12*SNT21)/SNT22

BNPCI)-TNT 1- (TNT12*TNT21)/TNT22
LL=NSUM+I
ANP(LL)-DCMPLX(1 .DO, O.DO)
BNP(LL)=DCMPLX(1.DO, O.DO)
ALPNP (LL) --SNT2 1/SNT22
BETNP (LL)=..TNT2i /TNIr22

30 CONTINUE

IF (NORG.EQ.1) RETURN
COMPUTE COEFICIENTS AN2,.. ,AN(N-1); BN2,...B(-)

ALPN2S,. ..,ALPN2(N-1); BETN2,...BETN2(N-1)
JJ-0
KKO0
MM1 -0
MM2-NMIN

NRGM1-NORG- I

DO 45 Jzl, NRGMI
C

Z a FKP(J)*BDP(J)
ZPLUS -FKP(J+1)*BDP(J)

KK=KK+NTER (J)
DO 40 Isi, NMIN

111-I+1
112u2*I+l
ETAP1-(II1*BJHP1(jj+I)-I*BJHP1(JJ+I+2)) /T12
ETAP2-(Ill*BJHP2(JJ+I)-I*BJH-P2(JJ+I+2))/112
ZEPI-(111*BJHP1 (KK+I) -I*BJHP1 (KK+I+2) )/112
ZEP2u(III*BJHP2(KK+I)-I*BJHP2(KK+I+2))/II2
c DELIJP=BJHPI(JJ+I.1)*ZEPl-BJHP1(KK.+1i)*ETAPI
DELNPE - CI*(FKP(J)*BDP(J))**(-2)
c ~IF(IPSET2.LT.14.AND.J.NE.JOLD) THENl
c ~ JOLD -J
c IPSET2 = IPSET2 +1 1
c WRITE(*,*) DELNP,' =DETNP just before Slull calc'
c W'RITE(*,*) DELNPE,.' =DELNPE'
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ENDIF
DELNP = DELNPE

RATIO-FKP(J+1) /FKP(J)
SNP11-(ZEPI*BJHIP2(JJ+1+1) -RATIO*BJHP1 (KK+I+1) *ETAP2) /DELNP
SNP12-(ZEP1*BJI{P2(KK+1.1) -RATIO*BJHP1 (KK+I+1)*ZEP2) /DELNP
SNP21=(RATIO*BJHP1(JJ+I+1)*ETAP2-ETAP1*BJHP2(JJ+I+1)) /DELNP
SNP22-(RATIO*BJHiP1(JJ+I+1)*ZEP2-ETAP1*BJHP2(KKC.T+1) )/DELNP
DEL1-SNPI 1*SNP22-SNP12'sSNP21
IF(IPSET3.LT.1O.AND.JOLD1.NE.J) THEN

WRITE(*,*s) DELI.,- DELI'

DELEXA = (FKP(J+1)/FKP(J))*(-CI)/(ZPLUS**2)
WRITE(*,*)DELEXA,' = DELEXA'
IJRITE(*,*)J,' =3'
IPSET3 =IPSET3 + 1
JOLDi J

END IF
TNP11=(RATIO*ZEP1*BJHP2(JJ+I+1)-BJHP1(KK+I+1)*ETAP2) /DELNP
TNP12=(RATIO*ZEP1SBJHP2(KK+I+1)..BJHP1(KK4.I+1)*ZEP2)/DELNP
TNP21=(BJHP1 (JJ+I+1) *ETAP2-RATIO*ETAP1*BJHP2(JJ+I+1)) /DELNP
TNP22-(BJHP1(JJ+I+1)*ZEP2-RATIO*ETAPl*BJHP24(KK+I+1) )/'DELNIP
DEL2-TNP1 1*TNP22-.TNP12*TNP21
IF(IPSET4.LT.1O.AND.JOL.D2.NE.J) THEN

WRITE(*,*s) DEL2,' = DEL2'
DELEXA = (FKP(J+1)/FKP(J))*(-CI)/(ZPLUS**2)
WRITE(*,*)DELEXA,' = DELEXA'
IPSET4 =IPSET4 4 1

JOLD2 J
WRITE(*,*)J,' J

ENDIF
NN 1-MN 1+ I
NN2=rTh12+ I
ANP(NN2)=(ANP(NNI)*SNP22-ALPNP(NN1')*SNP12)/DELI
BNP(NN2)=(BNP(NN1)*TNP22-BETNP(NNI)*TNP12)/DEL2
ALPNP(NN2)=(-ANP(NN1)*SNP214-ALPNP(NN1)*SNP11)/DELI
BETNP(NN2)-(-BNIP(NN1)*TNP2l+BETNP(NNI)*TNP11)/DEL2

44C CONTINUE
JJ-JJ+2*NTER(J)
KK=KK+NTER (3)
MM1=rMTh1+fMIN
H12 =MM2+NMI N

45 CONTINUE
RETURN
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END

4 COEFAS subroutine

This subroutine generates the expansion coefficients of the scattered radiation outside the
N layer sphere as a function of a hypothesized number of layers and hypothesized layer
properties. This is called by function FUNCD which is an EXTERNAL variable that is
used as an argument in a Levinberg Marquardt subroutine LMDIFF which then attempts
to recover the actual sphere properties which will match the actual expansion coofficients
of the scattered radiation.

SUBROUTINE COEFAS
c through common CSMCCM.f
* GENERATE EXPANSION COEFFICIENTS

IMPLICIT REAL*8 (A-H, O-Z)

c Several variables are passed through CSMCOM.f the common
c These include FKPF(NLAYPO), the propgagation constants
c ANPFN(NLAYPO*NZ)
c BNPFN(NLAYPO*NZ)
c ALPFN(NLAYPO*NZ)
c BETFN(NLAYPO*NZ)
c BJNP(NZ)
c BHNP(NZ)
c and CEXZ (the Bessel function argument),BDPFN(NLAYPO), the
c layer radii(meters),Z = FKPF(J)*BDPFN(J),EPSPF(NLAYER),
c SIGPF(NLAYER) (conductivity in mhos per meter), STOPR
c

COMPLEX*16
1 BJHPI(1000),

2 BJHP2(1000), SJNP1(500), DELNP, SNT11, SNT12, SNT21,
3 SNT22, TNT11, TNT12, TNT21, TNT22, ETAPI, ETAP2,
4 ZEPI, ZEP2, SNP11, SNP12, SNP21, SNP22, TNPII, TNP12,
5 TNP21, TNP22, DELl, DEL2, SHNPi(500), RATIO,
6 DELNPE,CI,ZTEMP,ZPLUS,DELEXA

COMPLEX*16 DELTAA(I1)
INCLUDE 'CSMCOM.f

DIMENSION NTER(1O)
* COMPUTE COEFICIENTS ANt, BN1, ANN, BNN, ALPNI, BETNI, ALPNN, & BETNN

DATA JJK/O/

ONE = 1.DO
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ZERO -0. DO

JOLD - 0

CI = CMPLX(ZERO,ONE)

N 1=0

N2-0

IPRINT - 0

IPSET2 - 0

IPSET3 - 0

IPSET4 = 0

JOLD1 - 0

JOL.D2 -0

IF(NORGF.GT. 10) THEN

WRITE(*, 1007)

1007 FORMAT(' A value of NORGF ' ,IS, 'was entered'/
V' We are stopping the program~ in COEFAS')

STOP

END IF

NORGPI - NORGF + 1

DO 300 NR = 1,NORGF
c At this sta-P we have computed all the
c values of FKPF(NR) and we now wish to compute

c the Wronskians

DELTAA(NR) = CI*(FKPF(NR)*BDPFN(NR) )**(-2)
c******* WRhITE(* ,3001)NR,DELTAA(NR)

3001 FORMAT(' DELTAA(,15,') = ,2D20.10)

300 CONTINUE

DO 15 NR=1, NORGF

Z=FKPF(N4R) sBDPFM (NR)

ZPLUS = FKPF(NR+1)*BDPFN(NR)

CALL BJYH(BJNP, BHIIP, Z, N, STOPR)

DO 5 I=1,N

SJNPI(I)-BJNP(I)

SHNPICI)-BHNP(I)
5 CONTINUE

Z=F1(PF (tfRs-)*BDPFN(NR)

* CALL BJYH(IBJNF, BHNP, Z, NN, STOPR)

NMINF=MINO (N, UN)

NTER(NR)=NMINF

112= N2+NMIIIF

DO 10 1-1, NMINF

BJHPI(N14-I)=SJNP1(I)

BJHPI~i(N24I)=SHNP1 (I)
BJHP2(N1+I)=BJNP(I)
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BJHP2 (N2+I) =BINP (I)
10 CONTINUE

N1-Nl+2*NMINF
N2=N2+NIINF

15 CONTINUE
NNINF-MINN (NTERNORGF)
NMINF=NMINF-2
DO 17 I-1,NMINF

ALPNPCI)-DCMPL.X(0.D0, 0.DO)
BETNP(I)=DCMPLX(0.DO, 0.DO)

17 CONTINUE
NSUM=NORGF*NMINF
DO 30 I=l, NMINF

33=0
KK-O
I11xI+1
112=2*1+1
SlJTII=DCMPLX(l.DO, O.DO)
SJT12-DCMPLX(O.D0, 0.DO)
SNTr21-SNT12
SUT22-SNTI11
TNTiI-SNT11
TNT12=SNT12
TINT21=SNT12
TNT22=SNT1I
DO 27 3=1, NCRGF

ZPLUS -FKPF(J+1).BDPFN(J)
Z a FKPF(J)*BDPFN(J)
KK=KK+NTER (3)
ETAP1=(II1*BJHP1 (J3+l)-I*BJHP1 (33+I+2)) /112
ETAP2=(II1*BJHP2(JJ+I)-I*B3HP2(JJ+I42)) '112
ZEP1=(II1*BJHIP1(KK+I) -I*BJHP1(KK+I+2) )/112
ZEP2-(II1*BJJ{P2(KK+I) -I*BJHP2CKK+I+2) )/II2
c DELNP=BJHP1(JJ+I+1)*ZEPI-BJHP1(KK.I+1)*ETAP1
DELNPE = CI*(FKP(J)*BDP(J))**(-2)
c IF(IPPJNT.LT. 14) THEN

c MPINT a IPRINT+1.
c WRITE(*,*)DELNP,' DELNP'
c WRITE(*,*)DELNPE,' DELNPE'

c ENDIF
DELNP -DELNPE
RATID=FKPF(J.1) /FKPF(J)
SNPII=(ZEP1*BJ1{P2(JJ+I+1)-RATIO*BJHPI(KK+I~l)sETAP2)/DELNP
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SNP12-(ZEP1*BJHP2(KK+I+1)-RATIO*BJHP1(KK+I+1)*ZEP2)/DFELNP
SNP21=(RATIO*BJHP1(JJ+I+1)*ETAP2-ETAPI*BJHP2(JJ+I+1) )/DELNP

SNP22=(RATIO*BJHP1(JJ+I+1)*ZEP2-ETAP~I*BJHP2(KK.I+1))/DELNPI
ZTEMP-SNT1 1
SfNTI1-SNT1 i*SNP1 1+SNTi2*SNP21
SNT12-ZTEMP*SNP12+SNTi2*SNP22
ZTEMP=SNT21
SNT21-SNT2i*SNPI 1+SNT22*SNP21
SNT22=ZTEMP*SNP!12+SNT22*SNP22
TNP11=(ItATIO*ZEP1*BJIiP2(JJ+I+1)-BJHPI(KK4I*1)*ETAP2) /DELNP
TNP12-(RATIO*ZEPI*BJiiP2(KK+I+1)-BJHPi(KK+I+1)*ZEP2) /DELNP
TNP21=(BJHP1(JJ+I+1)*ETAP2-RATIO*ETAPI*BJHP2(3JJ-I.1))/DELNP
TNP22-(BJHPI(JJ+I+i)*ZEP2.-RATIO*ETAP1*BJHP2(?K+I+1) )/DELNP
IF (JJK.EQ.O) THEN

ýi`RITE(7,*)' I, RATIO, ZEPi, DELNP, ETAP21
WRLITE(7,*)ZPLUS/Z,' --ZPl.US/Z'

I'iK=2
ENDIF
1-7 (I.LT.6) TH1EN
c 'WRITE(7,759) I, RATIO, ZEP1, DELNP, ETAP2

759 rORMAT(CI = 'lX41'E251'E25''2)
ENDIF
ZTEMP=TNTX11
TNT1 1=TNT1 1*TNPl 1+TNT12*TNP21
T'1'TT12=ZTEMP*TNP 12+TNT12*TNP22
ZTEMP=TNT2 I
TNT21=TNT21*TNP1 1.TNT22*TNP21
TNT22=ZTEMP*TNP 12+TNT22*TNP,,,.
JJ=JJ*2*NTER(J)
KK=KK"-NTER(J)
27 CONTINUE

ANPFN(I)=SNT11-(SNT12*SNT2i) /SNT22
BNPFN(I)=TNT11- (TNTi2*TNT21) /TNT22
LL- NSUM.I
ANPFN(LL)-DCMPLX(1 .DO, 0.DO)

* SNPFN(LL)-DCMPLX(l.DO, O.DO)
ALPFN(LL) =-SNT21/SNT22
BETFUl(LL) =-TNT21/TNT22

30 CONTINUE

IF (NORGF.EQ.1) RETURN
*COMPUTE COEFICIENTS AN?,. .,AN(fl-1); BN2,...B'(-)

* ALPN2,..,ALPN2(N-1); BETN2,. ..UETN2(fl-1)

~JJ=o
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KK.-xO

MM2-NMINF
NRGMI=NORGF- 1

DO 45 3=1, N1SGMI

Z = FKPF(J)*BDPFN(J)
KK-KK+NTER (J)

DO 40 1-1, NI4INF

I11=1+1

I12=2*I~l

ETAP2=(III1*BJHP2(JJ+,I) -I*BJHP2C JJ+I+2) )/I12

ZEPI=(II1*BJHP1 (KK+I) -I*BJHPi (KK+-I+2) )/112
ZEP2=(II1*BJHP2(KK+I) -I*BJI{P2(KK+I+2))/II2
c DELNP=BJJ{PlCJJ+I+1)*ZEPI-BJI{P1CKK+1+1)*ETAP1

DELNPE =CI*(FKPF(J)*BDPFN(J))**C-~2)
c IF(IPSET2.LT.14.AND.J.NE.JOLD) THEN

c ~ JOL = J

c IPSET2 = IPSET2 +1
c W~RIE(*,*) DEL[P,l DELNP just befoxe SPNiI caic'
c WRITE(*,*) DELNPE,' DELNPE'

c ENDIF

DELNP - DELUPE

RATIO=FKPF(J+1) /FKPF(J)
SNP11=(ZEP1*BJHP2(JJ+I+1)-RATIO*BJHPI(KK+I.1)*ETAP2)/DEUT:

SNP12=(ZFP1*BJHP2(KK4I.1)-RATIO*B.'HPI(KK+I+i)*2EP2)/DFLNP

SN;P21=(RATIO*BJHPI(JJ+I+1.)*ETAP2-ETAPi*BJH-P2(JJ+1+1))1
1 D)ELIIP

SýNP22=%'RATIO-BJHP1(JJ+I+1)*Z"EP2-ETAP1*BJHP2(KK+I+e.) )/DELI!P

DEL1=SNP11*SNP22-.SNP12*SNP21.
IF(IPSET3.LT.10.AND.J'L.D1,NE.J) THEN
C****WRITE(*,*) DELI,' = DEL1'

DELEXA = (FKPF(J+l)/FKPF(J))*(-CI)/(ZPLUS**2)
C***** VRITE(*,*)D'-LEXA,' = DELEXA'
C***** WRITE(*,*)J,' J

IPSET3 IPSET3 +~ I
JOLDI J

END IF

TUIP11=(RATIC -ZEPI*BJHP2(jj+I+1)-BJHP1(KK+T-1>.ETAP2)/DELNIP

TNP12=(RATIO*ZEPl*BJHP2(KK.4I4-1)-B.XP1(KK+I.I)*ZEP2)/DELNP

TI;P2I=(BJHPICJJ+I+1)*ETAP2-RATIO*ETAP1*BJHP2(JJ+T+1))/DELNP
TNP22=(BJHPI(JJ+1+1)*ZEP2-RATTO*ETAPI*B.3HP2(KK+I+1))/DELNP
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DEL2-TNP 1*TNP22-TNP12*TNP21

IF(IPSET4.LT.10.AND.JOLD2.NE.J) THEN
c**** WRITE(*,*) DEL2,' = DEL2'
c**** DELEXA = (FKPF(J+1)/FKPF(J))*(-CI)/(ZPLUS**2)

c**** •WRITE(*,*)DELEXA,' - DELEXA'
IPSET4 a IPSET4 4 1

JOLD2 J 3
c**** WtRITE(*,*)J,' = J1

ENDIF

NNI=MM1+I
NN2=MM2+I

ANPFN(NN2)=(ANPFN(NN1)*SNP22-ALPFN(NNI)*SNP12)/DELl
BNPFN(NN2)=(BNPFN(NN1)*TNP22-BETFN(NNI)*TNP12)/DEL2

ALPFN (NN2)

1 (-ANPFN(NN1)*SNP21+ALPFN(NN1)*SNP11)/DEL1

BETFN (NN2) -

1 (-BNPFN(NN1)*TNP21+BETFN(NNi)*TNP11)/DEL2
40 CONTINUE

JJ-JJ+2*NTER(J)

KK-KK+NTER (J)

MMI=MM1+NMINF
MM2=MM2+NMINF

45 CONTINUE
RETURN
END

This is the end of the COEFAS expansion coefficient determination subrourine.

5 DPMPAR subroutine

This is a subroutine adapted from one written by Alfred Morris to dererminle the besT
machine constants for the particular computer being used to solve the problem.

DOUBLE PRECISION FUNCTION DPMPAR(I)
INTEGER I

C
C
C DPMPAR PROVIDES THE DOUBLE PRECISION MACHINE PARAMETERS FOR

C THE COMPUTER BEING USED. IT IS ASSUMED THAT THE ARGUMENT
C I IS AN INTEGER HAVING ONE OF THE VALUES 1, 2, OR 3. IF THE
C DOUBLE PRECISION ARITHMETIC BEING USED HAS T BASE B DIGITS AND
C ITS SMALLEST AND LARGEST EXPONENTS ARE EMIN AND EMAX, THEN

C

203



C DPMPAR(1) = B**(i - T), THE MACHINE PRECISION,
C
C DPMPAR(2) 1 B**(EMIN - 1), THE SMALLEST MAGNITUDE,
C
C DPMPAR(3) = B**EMAX*(1 - B**(-T)), THE LARGEST MAGNITUDE.
C
C TO DEFINE THIS FUNCTION FOR THE COMPUTER BEING USED, ACTIVATE
C THE DATA STATMENTS FOR THE COMPUTER BY REMOVING THE C FROM
C COLUMN I. (ALL OTHER DATA STATEMENTS IN DPMPAR SHOULD HAVE C
C IN COLUMN 1.) IF DATA STATEMENTS ARE NOT GIVEN FOR THE COMPUTER
C BEING USED, THEN THE SUBROUTINE MACH MAY BE USED TO COMPUTE THE
C VALUES FOR DPMPAR.
C
C
C
C DPMPAR IS AN ADAPTATION OF THE FUNCTION DiMACH, WRITTEN BY P.A.
C FOX, A.D. HALL, AND N.L. SCHRYER (BELL LABORATORIES). DPMPAR
C WAS DESIGNED BY B.S. GARBOW, K.E. HILLSTROM, AND J.J. MORE
C (ARGONNE NATIONAL LABORATORY). THE MAJORITY OF PARAMETER VALUES
C ARE FROM BELL LABORATORIES.
C
C

INTEGER MCHEPS(4)
INTEGER MINMAG(4)
INTEGER MAXMAG(4)
DOUBLE PRECISION DMACH(3)
EQUIVALENCE (DMACH(1),MCHEPS(1))
EQUIVALENCE (DMACH(2),MINMAG(1))
EQUIVALENCE (DMACH(3),MAXMAG(1))

C
C MACHINE CONSTANTS FOR THE BURROUGHS 1700 SYSTEM.
C
C DATA MCHEPS(1) / ZCC6800000 /
C DATA MCHEPS(2) / ZOO0OOOO0 /
C
C DATA MINMAG'I) / ZCO0800000 /
C DATA MINMAG(2) / ZOOO0OOOOO /
C
C DATA MAXMAG(1) / ZDFFFFFFFF /

C DATA MAXMAG(2) / ZFFFFFFFFF /
C
C MACHINE CONSTANTS FOR THE BURROUGHS 5700 SYSTEM.
C
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C DATA MCHEPS(1) / 01451000000000000 /
C DATA MCHEPS(2) / 00000000000000000 /
C
C DATA MINMAG(1) / 01771000000000000 /
C DATA MINMAG(2) / 00000000000000000 /
CC DATA MAXMAG(1) / 00777777777777777 /
C DATA MAXMAG(2) / 00007777777777777 /

C
C MACHINE CONSTANTS FOR THE BURROUGHS 6700/7700 SYSTEMS.
C
C DATA MCHEPS(1) / 01451000000000000 /
C DATA MCHEPS(2) / 00000000000000000 /
C
C DATA MINMAG(1) / 01771000000000000 /
C DATA MINMAG(2) / 07770000000000000 /
C
C DATA MAXMAG(1) / 00777777777777777 /
C DATA MAXMAG(2) / 07777777777777777 /
C
C MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES.
C (OCTAL FORMAT FOR FORTRAN 4 COMPILERS)
C
C DATA MCHEPS(1) / 15614000000000000000B /
C DATA MCHEPS(2) / 15010000000000000000B /
C
C DATA MINMAG(1) / 00014000000000000000B /
C DATA MINMAG(2) / OOOOOOOOOOOOOOOOOOOOB /
C
C DATA MAXMAG(1) / 37767777777777777777B /
C DATA MAXMAG(2) / 37167777777777777777B /
C
C MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES.
C (INTEGER FORMAT FOR FORTRAN 4 AND 5 COMPILERS)

DATA MCHEPS(1) / 248120191970443264 /
DATA MCHEPS(2) / 234468655599976448 /

C
DATA MINMAG(1) / 422212465065984 /
DATA MINMAG(2) / 0 /

C
DATA MAXMAG(1) / 576179277326712831 /
DATA MAXMAG(2) / 562668478444601343 /
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C
C MACHINE CONSTANTS FOR THE CRAY-1.
C
C DATA MCHEPS(1) / 0376424000000000000000B /
C DATA MCHEPS(2) / 000000000000000000000B /
C
C DATA MINMAG(1) / 0200034000000000000000B /
C DATA MINMAG(2) / O000000000000000000000B /
C
C DATA MAXMAG(1) / 0577777777777777777777B /
C DATA MAXMAG(2) / 0000007777777777777776B /
C
C MACHINE CONSTANTS FOR THE DATA GENERAL ECLIPSE S/200.
C
C NOTE - IT MAY BE APPROPRIATE TO INCLUDE THE FOLLOWING CARD -

C STATIC DMACH(3)
C
C DATA MINMAG/20K,3*0/,MAXMAG/77777K,3*177777K/
C DATA MCHEPS/32020K,3*0/
C
C MACHINE CONSTANTS FOR THE HARRIS 220.
C
C DATA MCHEPS(1),MCHEPS(2) / '20000000, '00000334 /
C DATA MINMAG(1),MINMAG(2) / '20000000, '00000201 /
C DATA MAXMAG(1),MAXMAG(2) / '37777777, '37777577 /
C
C MACHINE CONSTANTS FOR TlE HONEYWELL 600/6000 SERIES.
C
C DATA MCHEPS(1),MCHEPS(2) / 0606400000000, 0000000000000 /
C DATA MINMAG(1),MI?!MAG(2) / 0402400000000, 0000000000000 /
C DATA MAXMAG(1),MAXMAG(2) / 0376777777777, 0777777777717 /
C
C MACHINE CONSTANTS FOR THE HP 2100
C THREE WORD DOUBLE PRECISION OPTION WITH FTN4
C
C DATA MCHEPS(1), MCHEPS(2), MCHEPS(3) / 40000B, 0, 276B /
C DATA MINMAG(1), MINMAG(2), MINMAG(3) / 40000B, 0, 1 /
C DATA MAXMAG(1), MAXMAG(2), MAXMAG(3) / 77777B, 177777B, 177776B ,

C
C MACHINE CONSTANTS FOR THE HP 2100
C FOUR WORD DOUBLE PRECISION OPTION WITH FTN4
C
C DATA MCHEPS(1), MCIIEPS(2) / 40000B, 0 /
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C DATA MCHEPS(3), MCHEPS(4) / 0, 227B /
C DATA MINMAG(1), MINMAG(2) / 40000B, 0 I
C DATA MINMAG(3), MINMAG(4) / 0, /
C DATA MAXMAG(1), MAXMAG(2) / 77777B, 177777B /
C DATA MAXMAG(3), MAXMAG(4) / 177777B, 177776B I

4-C
C MACHINE CONSTANTS FOR THE HP 9000
C
C DATA DMACH(1) / .22204460492503131D-15 /
C DATA DMACH(2) / .22250738585072014D-307 /
C DATA DMACH(3) / .17976931348623157D+309 /
C
C MACHINE CONSTANTS FOR THE IBM 360/370 SERIES,
C THE AMDAHL 470/V6, THE ICL 2900, THE ITEL AS/6,
C THE XEROX SIGMA 5/7/9 AND THE SEL SYSTEMS 85/86.
C
C DATA MCHEPS(1),MCHEPS(2) / Z34100000, Z00000000 /
C DATA MINMAG(1),MINMAG(2) / ZOO100000, ZOOOOOOOO /
C DATA MAXMAG(1),MAXMAG(2) / Z7FFFFFFF, ZFFFFFFFF /
C
C MACHINE CONSTANTS FOR THE IBM PC - MICROSOFT FORTRAN
C
C DATA MCHEPS(1), MCHEPS(2) / #00000000, #3CBOOOOO /
C DATA MINMAG(1), MINMAG(2) / #00000000, #00100000 /
C DATA MAXMAG(1), MAXMAG(2) / #FFFFFFFF, #7FEFFFFF /
C
C MACHINE CONSTANTS FOR THE IBM PC - PROFESSIONAL FORTRAN,
C LAHEY FORTRAN, AND RM FORTRAN
C
C DATA MCHEPS(1), MCHEPS(2) / Z'00000000', Z'3CBOOOOO' /
C DATA MINMAG(1), MINMAG(2) / Z'00000000', Z'00100000' /
C DATA MAXMAG(1), MAXMAG(2) / Z'FFFFFFFF', Z'7FEFFFFF' /
C
C MACHINE CONSTANTS FOR THE PDP-10 (KA PROCESSOR).
C
C DATA MCHEPS(1),MCHEPS(2) / "114400000000, "000000000000 /
C DATA MINMAG(1),MINMAG(2) / "033400000000, "000000000000 /
C DATA MAXMAG(1),MAXMAG(2) / "377777777777, "344777777777 /
C
C MACHINE CONSTANTS FOR THE PDP-1O (KI PROCESSOR).
C
C DATA MCHEPS(1),MCHEPS(2) / "104400000000, "000000000000 /
C DATA MINMAG(l),MINIMAG(2) / "000400000000, "000000000000 /
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C DATA MAXMAG(1),MAXMAG(2) / "377777777777, "377777777777 /
C
C MACHINE CONSTANTS FOR THE PDP-I1 FORTRAN SUPPORTING
C 32-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).
C
C DATA MCHEPS(1),MCHEPS(2) / 620756992, 0 /
C DATA MINMAG(1),MINMAG(2) / 8388608, 0 /
C DATA MAXMAG(1),MAXMAG(2) / 2147483647, -1 /
C
C DATA MCHEPS(i),MCHEPS(2) / 004500000000, 000000000000 /
C DATA MINMAG(1),MINMAG(2) / 000040000000, 000000000000 /
C DATA MAXMAG(1),MAXMAG(2) / 017777777777, 037777777777 /
C
C MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING
C 16-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).
C
C DATA MCHEPS(1),MCHEPS(2) / 9472, 0 /
C DATA MCHEPS(3),MCHEPS(4) / 0, 0 /
C
C DATA MIINMAG(C),MINMAG(2) / 128, 0 /
C DATA MINMAG(3),MINMAG(4) / 0, 0 /
C
C DATA MAXMAG(1),MAXMAG(2) / 32767, -1 /
C DATA MAXMAG(3),MAXMAG(4) / -1, -1 /
C
C DATA MCHEPS(1),MCHEPS(2) / 0022400, 0000000 /
C DATA MCHEPS(3),MCHEPS(4) / 0000000, 0000000 /
C
C DATA MINMAG(3),MINMAG(2) / 0000200, 0000000 /
C DATA MINMAG(3),MINMAG(4) / 0000000, 0000000 /
C
C DATA MAXMAG(J),MAXMAG(2) / 0077777, 0177777 /
C DATA MAXMAG(3),MAXMAG(4) / 0177777, 0177777 /
C
C MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES.
C
C DATA MCHEPS(1),MCHEPS(2) / 0170640000000, 0000000000000 /
C DATA MINMAG(1),MINMAG(2) / 0000040000000, 0000000000000 /
C DATA MAXMAG(1),MAXMAG(2) / 0377777777777, 0777777777777 /
C
C MACHINE CONSTANTS FOR THE VAX 11/780
C (EXPRESSED IN INTEGER AND HEXADECIMAL)
C
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C DATA MCHEPS(1), MCHEPS(2) / 9472, 0 /
C DATA MINMAG(i), MINMAG(2) / 128, 0 /
C DATA MAXMAG(1), MAXMAG(2) / -32769, -1 /
C
C DATA MCHrEPS1), MCHEPS(2) / Z00002500, ZOOOOOOOO /
C DATA MINMAG(l), MINMAG(2) I ZOO000080, ZOOOOOOOO I
C DATA MAXMAG(1), MAXMAG(2) / ZFFFF7FFF, ZFFFFFFFF /
C

DPMPAR a DMACH(I)
RETURN

C
C LAST CARD OF FUNCTION DPMPAR.
C

END

This is the end of the routine to maximize accuracy of computation by recognizing tho
largest and smallest positive numbers represented on the computer.

6 EVEC or Electric Vector Determination Subrou-
tine

This subroutine determines ERAD, ETHETA, and EPHI. which are the radial. colar-
itudinal or azimuthal components of the electric vector at any prescribed point inside or
outside the sphere.

SUBROUTINE EVEC(NP, PD)
"* COMPUTE THE RADIAL, COLATITUDE, AND AZIMUTHAL COMPONENTS OF ELECTRIC
"* FIELD VECTOR FOR REGION P.

IMPLICIT REAL*8 (A-H, 0-7)
COMPLEX"16 CZERO,T,T1,PROD

C
c COMPLEX*16
c 1 ERAD, ETHETA,
c 2 EPHI, T, Ti, PROD
c COMMON /COEFF/ANP, BNP, ALPNP, BETNP
c COMMON FKP, BJNP, BHNP, CEX, BDP, P, DP, SIGP, EO, TIME, R,
c 1 THETA, PHI, STOPR, NC, NORG, NMIN

INCLUDE 'CSMCOM.f'
c DIMENSION BDP(9), SIGP(9), P(0O1), DP(500)
c COMPLEX*16 FKP(lO), CEX, ANP(1000), BNP(1000), ALPNP(1000),
c 1 BETNP(1000), BJNP(500), BHNP(500), ERAD, ETHETA,
c 2 EPHI, T, Ti, PROD
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CZERO a DCMPLX(0.DO,0.DO)
ERAD-DCMPLX(0.DO, O.D0)
E=hEA-DCMPLX(0.DO, 0.DO)

EPHI-DCI4PLX(0.DO, O.DO)
NCK-0
?NN (NP-I) *NMIN
DO 40 N-1.9C

FACla2.DO*N+1 .DO
FAC2-Ns (N. 1.DO)
P.ATIO-FACI /FAC2

T-FACI*P(N)*(BNP(NU+Dfl*BJNP(N+1)+BETNP(NN+N)*BRNIP(N+1))
c IF (N.LT.11) THEN

c W'RITE(6,456) N, RATIO, T

c456 FORMAT(' N = ,13,1 RATIO = 1,E14.7,3XIT = (',E14.7,

c I ',',El4.7,3)3)
c ENDIF
NCKinNCK+ 1
CALL TEP1N(NCK, T, 1)
ERAD-ERAD+T
T-ANP(NN+N).BJNP(N+1)4-ALPNP (NN+N) *BHNP(N+1)
CALL TEWMNCK, T, 0)
T1mBNP(NN.N)*((N+I .D0)*BJNP(N)-N*BJNP(N+2))/FAC1.BETNP(Nfl.N)*~

1 ((N+l.DO)*BHNP(N)-N*BXNP(N+2))/FAC1
CALL TERM(NCK, Ti, 1)

IF ((THETA.GE.1.D-6).AND.(THETA.LT.3.141S92D0)) GOTO 20
IF (TI{ETA.GE.3.141592D0) GOTO 10

ETHETAmETHETA+FACl/2 .DO*T-RATIO*DP(N)*TI
EPHI-EPHI-RATIO*DP0J) *T+FACI/2 .DO*TI
GOTO 30

10 ETHETAMETHETA+(-1,D0)*,*(N+I)*FACI/2.D0*T-RATIO*DP(N)*TI
EPHIuEPHI-RATIO*DP(N)*T+(-1.D0)**(N+1)4'FACI/2.DO*TI
GOTO 30

20 ETHETA-ETHETA+RATIO*P(N)/SINCTHETA)*T-RATIO*DP(N) *TI
EPHIuEPHI-RATIO*DP (N) *T+RATIO*P(N) /SINCTHETA)*TI

30 IF(MCK.EQ.4)NCKAO
40 CONTINUE

PROfl-EDsCEX
ERAD--PROD*COS(PHI)/(FKP(NP)*R) *EPAD
ETHETA-PROD*COS (PHI) *ETHETA

EPHI-PROD*SIN (PHI) *EPHI
PD- REAL(E-RAD*DCONJG(ERAD))÷ REAL(E7HETA*DCONJG(ETH-ETA)).
1 REAL(EPHI*DCONJG(EPHI))
pd~s igp(np) *pd
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RETURN
END

This assumes that the electric vector of the incoming radiation is polarized aloncg the x
axis.

7 EVCSC for Scattered Radiation

This subroutine determines the electric vector of the scattered radiation ar any point
outside the sphere.

SUBROUTINE EVCSC(NP, PD)
"* COMPUTE THE RADIAL, COLATITUDE, AND AZIMUTHAL COMPONENTS OF ELECTRIC
"* FIELD VECTOR FOR REGION P.

IMPLICIT REAL*8 (A-H, O-Z)
COMPLEX*i6 CZERO,T,T1,PROD
INCLUDE 'CSMCOM.f'

c COMPLEX*i6
c 1 ERAD, ETHETA,
c 2 E-PHI, T, Ti, PROD

C COMMON /COEFF/ANP, BNP, ALPNP, BETNP
C COMMON FKP, BJNP, BHNP, CEX, BDP, P, DP, SIGP, EO, TIME, R,
1 THETA, PHI, STOPR, NC, NORG, WMIN

C DIMENSION BDP(9), SIGP(9), P(101), DP(500)
C COMPLEX*16 FKP(iO), CEX, ANP(1000), BNP(i000), ALPNP(1000),
1 BETNP(iO00), BJNP(S00), BHNP(SO), ERAD, ETHETA,

C 2 EPHI, T, Ti, PROD

CZERO - DCMPLX(0.DO,0.DO)
ERADSC-DCMPLX(O.DO, 0.DO)
ETHESC=DCMPLX(O.DO, O.DO)
EPHISC-DCMPLX(0.DO, 0.DO)
NCK=O

NN- (NP-i) *NMIN
DO 40 N-1,NC

FACi=2.DO*N+i .DO

FAC2=N*(N+I .DO)
RATIO-FACI /FAC2
c TuFACI*P(N)*(BNP(NN+N)I*BJNP(N+I)+BETNP(NN+N)*BHNP(N+1))

TUFAC1*P(N)*(BETNP(NN+iN)*BHNP(N+I))
C IF (N.LT.il) THEN
C WRITE(6,456) N, RATIO, T
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c456 FORLMAT(' N - 1,13,1 RATIO - ',E14.7,3X,1T - (1,E14.7,
1 , . 1 . , '

C ENDIF

NCK-NCK+ 1
CALL TF.RM(NCK, T, 1)

ERADSCnERADSC+T
c T-AlIP(NN+N) *BJNP (N+1)+ALPNP(NN+N) *BHNPCN+1)
T-ALPlJP(NN+N) *BHNP(N+1)
CALL TERMOUCK, T, 0)

cT1-BNP(NN+!N)*((N+1.DO)*BJNP(N)-N*BJNP(N+2))/FAC1+BETNP(NN+N)*
c 1 ((N+1LDo)*BHNP(N)-N*BHNP(N+2-))/FACI

T1=BETNP (NN+N) *
1 ((N+1 .DO) *BHNp(N) -N*BHNP(N.2) )/FAC1

CALL TERM(NCK. Ti, 1)
IF ((THETA.GE.'1.D-6).AND.(THETA.LT.3.141592D0)) GOTO 20
IF (THETA.GE.3.141592D0) GOTO 10
E-THESC-ETHESC+FACl/2.DO*T-RATIO*DP (N) *T1
EPHISC-EPHISC-RATIO*DP(N)*T+FAC1/2 .DO*T1
GOTO 30

10 ETHESC=ETHESC+(-1.DO)**(N+1)*FACI/2.DO*T-RATIO*DP(N)*T1
EPHISC=EPHISC-RATIO*DP(N)*T+(-l.DO)**(N+i)*FAC1/2.DO*T1

GOTO 30
20 ETHESC-ETHESC+RATIO*P(N)/SIN(T1{ETA)*T-RATIO*DP(N) *T1

EPHISC=EPHISC-RATIO*DP(N) sT+RATIO*P(N) /SIN(THETA) *Ti
30 IF(NCK.EQ.4)NCK-O

c TERM computes either I**N or I*sIs** and this permits
c us to achieve more rapid computation with a computed GOTO
c rather than by using an extra multiplication; an alternative
c would have been to replace NCK by NCK mod 4.

40 CONTINUE

PRODaEO*CEX
ERADSC--PROD*DCOS(PHI)/(FKP(NP) *R)*ERADSC
IF(IPESIN.EQ. 1234) THEN

1WRITE(*,*)N0RG,,' - NORG'
WRITE(*,*)NMIN,' - NMIIJ'
WRITE(*,*)NORG*NMIN+2,' - NORG*NMIN+2'
WRITE(*,*)NVAL,' - NVAL'
WRITE(*,*) BHNP(NVAL+1),' - BHNP(NVAL+1)'
WRITE(*,*) PROD,' - PROD in EVCSC.f'
WJRITE(*,*) FKP(NP)*R,' = FKP(NP)*R'
WRITE(*,*) UP,' =NP'

IPESIN = 0
ENDIF
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ETHESC=PROD*DCOS (PHI) *ETHESC
EPHISC"PROD*DSIN(PHI) *EPHISC
PD- REAL(ERADSC*DCONJG(ERADSC)) + REAL(ETHESC*DCONJG(ETHESC))÷

I REAL(EPHISC*DCONJG(EPHISC))
RETURN

9 END

8 EVCINC for the electric vector of the incoming rl-
diation

This subroutine gives a spherical harmonic representation of the electric vector of the
incoming radiation. It is important to make sure that the incoming radiation is accurately
represented by the spherical harmonic expansion. If this is not true, then everyrhing
else could match up and you could still be getting incorrect values of the solution. This
comparison is printed out.

SUBROUTINE EVCINC(NP, PD,ERADIN,ETHEIN,EPHIIN)
"* COMPUTE THE RADIAL, COLATITUDE, AND AZIMUTHAL COMPONENTS OF ELECTRIC
"* FIELD VECTOR FOR REGION P.

IMPLICIT REAL*8 (A-H, O-Z)
COMPLEX*16 CZERO,T,T1,PROD,ERADIN,ETHEIN,EPHIIN

C

C COMPLEX*16
c I ERADIN, ETHEIN,
c 2 EPHI, T, Ti, PROD
c COMMON /COEFF/ANP, BNP, ALPNP, BETIJP
c COMMON FKP, BJNP, BHNP, CEX, BDP, P, DP, SIGP, EO, TINE, R,
c I THETA, PHI, STOPR, NC, NORG, NMIN

INCLUDE 'CSMCOM. f'
c DIMENSION BDP(9), SIGP(9), P(101), DP(500)
c COMPLEX*16 FKP(1O), CEX, ANP(1000), BNP(1000), ALPNP(UO00),
c 1 BETNP(1000), BJNP(500), BHNP(500), ERAD, ETHETA,
c 2 EPHI, T, Ti, PROD

CZERO = DCMPLX(O.DO,O.DO)
WRITE(*,*)CZERO,' = CZERO'
ERADIN=CZERO
ETHEIN=CZERO
EPHIIN=CZERO
NCK-O
NN=(NP-I)*NMIN
DO 40 N=1,NC

FAC1=2.DO*N+I .DO
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FAC2-N* (N+1.DO)
RATIO=FACI /FAC2
T-FACI*P(N)*(BNP(NN+N)*BJNP(N+1))
c IF(N.LT.11) THEN
c WRITE(6,456) N, RATIO, T

c456 FORMAT(' N = 1,13,1 RATIO 1 ,E14.7,3X,'T (',El4.7,

c 1 ,' ,El4.7,')')
c ENDIF

NCK-NCK+ 1
CALL TERM(NCK, T, 1)
ERADIN-ERADIN+T
T-ANP(NN+M) *BJNP (N+1)
CALL TERM(NCK, T, 0)
Tl=BNP(NN+N)*((N+1.DO)*BJNP(N)-N*BJNP(N+2))/FACI
CALL TERMCNCK, Ti. 1)
IF ((THETA.GE.1.D-6).AND.(THiETA.LT.3.141592D0)) GOTO 20
IF (THETA.GE.3.141592D0) GOTO 10
ETHEIN=ETHEIN+FAC1 /2. DO*T-RATIO*DP (N) sTI
EPHIIN:EPHIIN-RATIO*DP(N)*T+FACI/2 .DO*Tl
GOTO 30

10 ETHEIN=ETh[EIN+(-1.D0)**(N+1)*FACI/2.DOsT-RATiflsDP(N)*TI
EP1{IIN=EPHIIN-RATIO*DP(N)*T+(-l.DO)**(N+1)aPFACI/2.DO*Tl
GOTO 30

20 ETHEIN=ETHEIN+RATIO*P (N) /SIN (THETA) *T-RATIO*DP(l) *T1

EPHIIN=EPHIIN-RATIO*DP (N) *T+RATIO*P (N) /SIN (THETA) *Ti
30 IF(NCK.EQ. 4)NCK=O
40 CONTINUE

PROD=EO*CEX
ERADIN--PRLOD*COS (PHI) /(FKP(NP)*R)*ERADIN
ETHEIN=PROD*COS (PHI)*iETHEIN
EPHIIN=PROD*SIN(PHI) aEPHIIN
PD- REAL(ERADIN*DCONJG (ERADIN)) +

1 REAL(ETHEIN'*DCONJG(ETHEIN) )+
1 REAL(EPHIIN*DCONJG(EPHIIN,))
RETURN
END
SUBROUTINE TERM (NOKIT,KE)

COMPUTE I**NCK*(MT TERM IN SERIES)

IMPLICIT REAL*8 (A-fl, O-Z)

COMPLEX*16 T
IF (KEY.EQ.1) GOTO 20
GOTO (5, 10, 15, 45), NCK

20 GOTO (10, 15, 45, 5), NCK
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5 T-DCMPLX(-DIMAG(T), REALMT))

GOTO 45

10 T--T

GOTO 45

15 T-DCMPLX(DIMAG(T), - RE.ALMT)

14 45 RETURN

END

This is the end of the subroutine to represent the electric vector of the incomin~g plane
wave in terms of vector spherical harmonics.

9 EVSPHD helps compute Mueller matrix entriez

This subroutine will help us compute the amplitude scattering matrix.

SUBROUTINE EVSPHD(NP, PD,DETHES ,DEPHIS)
"* COMPUTE THE RADIAL, COLATITUDE, AND AZIMUTHAL COMPONENTS OF ELECTRIC
"* FIELD VECTOR FOR REGION P.

IMPLICIT REAL*8 (A-H, O-Z)

COMPLEX*16 CZERO,T,T1 ,PROD,DETHES,DEPHIS

c
C COMPLEX*16
C 1 E.UAD, ETHETA,
c 2 EPHI, T, Ti, ?ROD

C COMMON /COEFF/ANP, BNP, ALPNP, BETNP

C COMMON FKP, BJNP, BHNP, CEX, BDP, P, DP, SIGP, EO, TIME, R,

1 THETA, PHI, STOPR, NC, NORG, NMIN

INCLUDE 'CSMCOM.f)

c DIMENSION BDP(9), SIGP(9), P(101), DP(500)

C COMPLEX*16 FKP(1O), CEX, ANP(lOOO), BNP(1000), ALPIIP(1000),

1 BETNP(1000), BJNP(500), BHNP(500), ERAD, ETHETA,

c 2 EPHI, T, Ti, PROD

CZERO = DCMPLX(0.DO,0.DO)

EPRADSC=DCMPLX(O .O, 0 .DO)
ETHESC-DCMPLX(O .DO, 0 .DO)

% EPHISC-DCMPLX(O.DO, O.DO)

NCK=O

NN- (NP-i) *NMIN

DO 40 N=1,NC

FACI=2.D0*N+1 .DO

FAC2-N*(N+1 .DO)

RATIO=FAC 1/FAC2

C T=FAC1*P(N)*CBNP(NN+N)*BJNP(N+1)+BETNP(NN+N)*BI-WP(N+1))
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T-FACIsP (N) *(BErN? CNN+N) sBHNP (N+1) )
c IF (N.LT.11) TH{EN

C WRITE(6,456) N, RATIO, T
c456 FORMAT(' N =',13,' RATIO ',El4.7,3X,'T =(1,E14-7,

1 ',',E14.7,1)1)
C ENDIF

NCK=NCK '1
CALL TE.RM(NCK, T, 1)
ERADSC'-ERADSC+T

c T=ANP(NI'+N)*BJNP(N+1)+ALPNP(NN+N)*BHNP(N+l)
T=ALPNP(2JN+N) *BHNP(N+l)
CALL TERM(NCK, T, 0)

c Tl=BNP(NN+Hf)*((N+i.D0)*BJNP(N)-N*BJNP(N+2))/FAC1+BETNP(NtJi+N)*
c 1 ((N+I.DO)*BI{NP(N)-N*BHNP(N+2))/FACI

Tl=PETNP(NN+N)*
I. ((N+1 .D0)*BHNP(N)-N*BHNP(N+2))/FAC1

CALL TERM(NCK, T1, 1)
IF ((THETA.GE.i.D-6).AflD.(THETA.LT.3.141592D0)) GOTO 20

IF (THETA.GE.3.141592D0) GOTO 10
ETHESC- ETH ESC+FACI /2. DO*T-RATIO*DP (N) *Tl
EPHISC-EPHISC"-RATIO*DP(N)*T4-FAC1/2 .D0*Ti
GOTO 30

10 ETHESC=ETI{ESC+(-1.DO)**(N+1)sFAC1/2,D0*T-RATIO*DPCN')*TI
EPHISC=EPHISC-RATIO*DPCN)*T4-(-1.D0)s*(N+1)*FACI/2.D0*T1
IOTO 30
20 ETHESC=ETHESCRATIO*P(N)/SIN(THETA)*T-RATIO*DP(N)*TI

EPHISC=EPH-ISC-RATIO*DP(N)*T+PRATIO*P(N)/SIN(THETA).TI
30 IF(NCK.EQ.4)NCK=0

c This effectively gives us NCK MOD for input
C into TERM.
C

40 CONTINUE
PROD=ED*CEX
ERADSC=-PROD*COS(PHI) /(FKP(NP) *R) *ERADSC
DETHfES=PROD*(-SIN(PHI) )*ETHESC
ETHESC=PROD*CLS(PHI) *ETHESC
DEPKI:S = PROD*COS(PHI)*EPHISC
EPHISC=PRUD*SIN(PHI) *EPHISC
PD= REAL(ERADSC*DCONJii(ERADSC))+ REAL(ETHESC*DCONJG(ETHESC) )+
1 REAL(EPHISC*DCONJG(EPI11ISC))
RETURN
END

We ý(:onll)ljte liftre the ,~iiqtif-rc D of theIieliigt i oft lii 1le-rt ic vev 'ar re r) ati
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and the radial, theta, and phi components of the scattered radiation.

10 ENORM

This determines a vector norm used in solving the inverse problem.

FUNCTION ENORM(N, X)
c REAL FUNCTION ENORM(N,X)

INTEGER N
REAL*8 X(N), ENOPRM

C
C
C FUNCTION ENORM
C
C GIVEN AN N-VECTOR X, THIS FUNCTION CALCULATES THE
C EUCLIDEAN NORM OF X.
C
C THE EUCLIDEAN NORM IS COMPUTED BY ACCUMULATING THE SUM OF
C SQUARES IN THREE DIFFERENT SUMS. THE SUMS OF SQUARES FOR THE
C SMALL AND LARGE COMPONENTS ARE SCALED Sa THAT NO OVERFLOWS
C OCCUR. NON-DESTRUCTIVE UNDERFLOWS ARE PERMITTED. UNDERFLOWS
C AND OVERFLOWS DO NOT OCCUR IN THE COMPUTATION OF THE UNSCALED
C SUM OF SQUARES FOR THE INTERMEDIATE COMPONENTS.
C THE DEFINITIONS OF SMALL, INTERMEDIATE AND LARGE COMPONENTS
C DEPEND ON TWO CONSTANTS, RDWARF AND RGIANT. THE MAIN
C RESTRICTIONS ON THESE CONSTANTS ARE THAT RDWARF**2 NOT
C UNDERFLOW AND RGIANT**2 NOT OVERFLOW. THE CONSTANTS
C GIVEN HERE ARE SUITABLE FOR EVERY KNOWN COMPUTER.
C
C THE FUNCTION STATEMENT IS
C
C REAL FUNCTION ENORM(N,X)
C
C WHERE
C
C N1 IS A POSITIVE INTEGER INPUT VARIABLE.
C
C X IS AN INPUT ARRAY OF LENGTH N.
C
C SUBPROGRAMS CALLED
C
C FORTRAN-SUPPLIED ... ABS,SQRT
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C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.

C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

C
C

INTEGER I
REAL AGIANT,FLOATN, ONE,RDWARF,RGIANT,S1 ,S2,S3,XABS, XIMAX. X3MAX,

* ZERO

DATA ONE,ZERO,RDWARFRGIANT /1.OEO,O.OEO,3.834E-20,1.304Ei9/
Si = ZERO

S2 - ZERO

S3 = ZERO

X1MAX = ZERO

X3MAX = ZERO

FLOATN = N

AGIANT = RGIANT/FLOATN
DO 90 I = 1, N

XABS - ABS(X(I))

IF (XABS .GT. RDWARF .AND. XABS .LT. AGIANT) GO TO 70
IF (XABS .LE. RDWARF) GO TO 30

C
C SUM FOR LARGE COMPONENTS.
C

IF (XABS .LE. XIMAX) GO TO 10
Si = ONE + SI*(XIMAX/XABS)**2

XIMAX = XABS

GO TO 20
10 CONTINUE
Sl = Sl + (XABS/XIMAX)**2

20 CONTINUE
GO TO 60

30 CONTINUE
C
C SUM FOR SMALL COMPONENTS.
C

IF (XABS .LE. X3MAX) GO TO 40
S3 = ONE + S3*(X3MAX/XABS),*2
X3MAX = XABS

GO TO 50
40 CONTINUE

IF (XABS .NE. ZERO) 33 = S3 + (XABS/X3MAX)**2
50 CONTINUE
60 CONTINUE
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GO TO 80
70 CONTINUE

C
C SUM FOR INTERMEDIATE COMPONENTS.
C

S2 a S2 + XABS**2
80 CONTINUE
90 CONTINUE

C
C CALCULATION OF NORM.
C

IF (Si .EQ. ZERO) GO TO 100
ENORM w XIMAX*SQRT(SI+(S2/XIMAX)/XIMAX)
GO TO 130
100 CONTINUE
IF (S2 .EQ. ZERO) GO TO 110

IF (S2 .GE. X3MAX)

* ENORM - SQRT(S2*(ONE+(X3MAX/S2)*(X3MAX*S3)))
IF (S2 .LT. X3MAX)
* ENORM - SQRT(X3MAX*((S2/X3MAX)+(X3MAX*S3)))
GO TO 120

110 CONTINUE
ENORM - X3MAX*SQPT(S3)

120 CONTINUE
130 CONTINUE

RETURN
C
C LAST CARD OF FUNCTION ENORM.
C

END

This is the end of the matrix norm 'omnputation.

11 Mueller and amplitude scattering matrix entry de-
termination

This uses the ainplitut,. scattring matrix entris S1 an, S. f',, the li,, .•,,luti, i to
compute the Muvller matrix entries.

SUBROUTINE MUEMTX(I,S1,$2,S 11,21,,S33,S34,S43)
C
C SUBROUTINE MUEMTX uses amplitude scattering *
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C
C CALCULATE AND RETURN MUELLER MATRIX ENTRIES FOR SPHERE SCATTER
C THE THETA ANGLES GO FROM -180 TO 180 DEGREES.
C PHI ANGLES ARE 0 AND 90 DEGREES
c FILES O-M11.DAT, O-M12.DAT, 0-M33.DAT, 0.--d34.DAT, O-M43.D)AT

C

IMPLICIT REAL*8 (A-H, O-Z)
COMPLEX*1ISi5,S2

C; These muet appear In the calling program
c OPEN(70,FILE-'0-M11 .DAT')
c OPEW(1,FILE-'O-M12,DAT')
c OPEN(74,E'ILE-'O-M33.DAT')
c OPEN(75,FILE-'0-M34.DAT')
c OPEN(77,FILE-'O-M43.DATI)
c REWIND(70)
c REWINDC71)
c REWIND(72)
c REWIND (74)
r REWIND (75)
c REWIND 6(77)

Sl1 v SDO*(ABS(Sl)**'2 + ABS(S2)**2)
S12 a SDO*(ABS(S2)**.2 - ABS(S1)**2)
321 a SDO0*(ABS(S2)**2 - ABS(SI)aa2)
S22 - 511
533 - REAI.(S1.COUJG(S2))
S34 - DIMAG(S2*COIIJG(S1))
S43 - DIMAC(Sl*COflJG(S2))
S44 w REAL(Sl*COIIJG(S2))

WRITE(70,'w)I,S1i
WRITE(71 , ) I,S12/S11
WRITE(74, .)I,S33/S11

WRITEC75,a)I,S34/SI1
WRITE(77,a) I ,S43/S11

C These must appear af~dr we have completed all printing
c in the calling program
c CLUSkE(UtIT.7O)D
c CLOSE(UNITu71)
C CLOSE(UUIT=74)
c CLOSE(UIIIT-75)
c CLOSE(UNIT=77)
C

RETURN!
END)



The entries of the 4 by 4 Mueller matrix normalized by the (1,1) entry are computed by
this routine.

12 MMEVEI

This calls PL and EVSPHD and computes the amplitude scattering matrix enitries that
are used by the previous; subroutine.

SUBROUTINE MMEVEI (PHID, IFARMU, R2MU)
IMPLIClC REAL*8(A-H,O-Z)
COMPLEX*16 ZBFA,DETHES IDEPHISEINOLD,
I EINPAR,EIPERP,DEIPAR,DEINPE,CI ,S1 ,S2
INCLUDE 'CSMCOM. f'

DATA PI/3. 14159265358979323D0/
CI a (O.DO,1.DO)
OPEN(82,FILEu'OKUEL9O.DAT')
OPEN(84 ,FILEu' OMUELO .DAT')

REWIND (82)
REWIND (84)
RADPD a PI/180.DO
IF(R2MU.GT. 1.D2*BDP(NORG)) THEN

WRITE(*,*)R2KU,' - R2MU is too large'
WRITE(*,*)' Stopping program'

STOP
ENDIF
IF(IFARMU.EQ.1) THEN
ZBFA a FKP(NORG4.1)*R2M4U
CALL BJYH(BJNP,BHNP,ZBFA,NC,STOPR,NORC~l)
IF(NC.GT.IIMIN) THEN

NC 1NMIN-2

ELSE
NC. NC-2

ENDIF
c ZEFA is the complex Bessel Function Argumrent
c We call the Bessel functions with this argument

DO 101 JJ - 1,2
IF(JJ.EQ.1) THENI

PHI O .DO
COSPHI - 1.DO

SINPHI a .OM

ENDIF
IF(JJ.EQ.2) THEN
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PHI - PI/2.DO
COSPHI =0.D0
SINPHI = 1.D0

END IF
DO 100 I - 0,180
THETAD w FLOAT(IM
IF(I.EQ.O) THEN

THETAD a .OOOIDO
END IF
IF(I.EQ.1S0) THEN

THETAD a 179.999
ENDIF
THETA aTHETAD*RADPD
EINOLD -EO*EXP(CI*FKP(NORG+i)*R2M4U*COS(THiETA))
EINPA1R EINOLD*COS(PHI)
EIPERP EINOLD*SIN(PHI)
DEIPAP1R - EINOLD*SIN(PHI)
DEINPE -EINOLD*COS(PHI)
CALL PL(THETA,NCP,DP)
CALL EVSPHD(NORG+1 ,PD,DETHES,DEPHIS)
IF(JJ.EQ.1) THEN

S1 w DEPHIS/DEINPE
S2 a ETHESC/EINPAR
WRITE(82,*)S1 ,S2
CALL M4UEMTX(I,Sl,S2,Sl1,S21,S33,S34,S43)

c This call will cause the Mueller matrix elements to be
c deposited into files.

ENDIF
IFCJJ.EQ.2) THEN

Si a EPHISC/EIPERP
S2 a DETHES/DEIPAR
WRITE(84,*)S1 .52

ENDIF
c

100 CONTINUE
101 CONTINUE

END I
IF(IFAR4U. NE.1) THEN
WRITE(*,*)IFARMU1J, IFARM4U is wrong value'
WRITE(*,*), Stopping program in MNEVEI'
STOP

EIIDIF
CLOSE (UN ITa82)
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CLOSE (UN IT-84)
RETURN
END

* 13 BTERAD inversion by the scattered radiations ra-
dial component

The FUNCTION BTERAD uses the radial component of the electric vector of the
scattered radiation to determine the ~3 expansion coefficients of the scatterod radiat ion.
This routine calls PL and EVCSC.

FUNCTION BTERAD(THETAQ ,PHIQ)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
COM.PLEX*16 CI ,ALERADTERM,BTERAD

c We are using the radial component of the scattered
c radiation to got the expansion coefficient beta

INCLUDE 'CSMCOM.f'
DATA PI/3. 141S9265358979323D0/
CI a DCMPLX(O.DO,1.DO)

c PI a 3.14159265358979323D0
THETA - THETAQ
PHI - PHIQ
CALL PL(THETA,NC,P,DP)
CALL EVCSC(NORG*1 9D
ALERAD - ERADSC*P(NVAL)*DCOS(PHI)
ALERAD a FKP(NORG+1)PR*ALERAD/
1 ((NVAL*(NVAL+1))*(-CEX*EO)a2.DO*PI*(CIe*(NVAL+±))*BHUIP(N1VAL+1))
IF(IPRDIA.EQ, 1234) THEN

WRI TE(*,s)EO*CEX1' a EO*CEX'
WRITE(*,*)CI**(NVIAL+j),' *CI.*(NVAL+1)'

* WRITE(*,*)R,' a R
WRITE(*,*)RHNP(NVAL.1),,' *BHNP(NVAL+1) in BTERAD'
WRtITE(*,*)FKP(NORG+j),' FKP(NORG4I) in BrERAD'
TERM - -(CEX*EO/(FKP(NORG.1)*R))sCI.'*(NVAL.1)uBHNP(NVAL+1)

*WRITE(*,*)TERM, I-
WRITE(*,*),' -CCEX.EO/(FKP(NORG+i)*Rt))*(CI**(NVAL+1)*BHIIP)I
WRITE(*,*)NVAL,' - NVAL'
IPRDIA - 11

END IF
ETERAD a ALERAD
RETURN
ENID
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14 PROPGF - propagation constants in all layers

The subroutine PROPGF determines, as the search is carried out for the sphere which
gave the scattered radiation data, the propagation constants FKPF in each of the l-tyors
of the sphere that was hypothesized to have caused this scattered radiation. If the 1)(rmit-
rivity is e, the conductivity is a, the permeability is ji, and the frequency is w, then the
square of the propagation constant k for an isotropic medium is

k2 = 2 /e - iwpa

SUBROUTINE PROPGF
IMPLICIT REAL*8(A-H,O-Z)
INCLUDE 'CSMCOM. f'
VEL - VELOCI

c23456789101112

FAC1 - OMFGA/VELOCI
DO 37 I = 1,NORGF
FAC2 - EPSPF(I)/2.DO
FAC3 a SQRT( 1.DO +

I (I.DO/(EPSO.POMEGA)**2)*(SIGPF(I)/EPSPF(I))**2
REKP - FAC1*SQRT(FAC2* (FAC3+i.DO))
FIMEPoFAC1*SQRT(FAC2*(FAC3 - I.DO))
FKPF(I) - DCMPLX(REKP,FIMKP)

37 CONTINUE
NORGPI - NORGF + I

C

FKPF(NORGPI )uDCMPLX(FAC I, 0, DO)
RETURN
END

15 Bessel function subroutine BJYI

The Bessel function routine BJYH creates arrays B-JNP and BHNP of 3,-4sl fiincri, l
values at argument 7.

SUBROUTINE BJYH(BJNP, BHNP, Z, N, STOPR)
c COMPUTE SPHERICAL BESSEL FUNICTIONS

IMPLICIT REAL*8 (A-H, O-Z)
COMPLEX*16 BJNP(500),BHNP(500),Z,ZTI,TI,ZSQTDZ,

1 XNU, Al, DEN, F, CF, F1, Q
c The complex variable QP was removed
c The complex array ','01P(500) was removed
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NBF=499
BJNP(1)a SIN(Z)/Z
BJNPk(2)C(BJNP i) -COS(z))/Z
ZT1-DCMPLXC-DIM4AG(Z), REALMZ)
TI-EXP(ZT1) /Z
Ti-DCMPLX(DIMAG (Ti) ,- REAL(T1))
BHNP (1)-Ti
BHNP(2)uDCMPLX(DIMAG(T1),- RE.AL(Tl))*(1.DO-1,DO/ZT1)
ZSQ=Z*Z
TDZu2.DO/Z

X-1 .DO/STOPR
DO 15 N=3, NBF

XNPH=DFLOAT(N) -.5D0
XNU-- (XNPH+ 1.DO) *TDZ
AlaXNPH*TDZ
DENuXNU.1 .DO/Al
F-XNU/ (DEN*A 1)
CFu-TDZ
DO 5 1-2,200

CF--CF
Ail'CF. (XNPH+I)
XNUnA1+i .DO/XNU
DEN*A1.1.DO/DEN
Fl=XNU/DEN
F-F*Fl
IF (ABS(IJS("")-1.DO).LT.lD-14) COTO 10
5 CONTINUt
10 BJNP(N)-F*BJNP(N-1)

Q*1 .DO/(ZSq*BJNP(N-1))
BHNP(N)-F*BHNP(N-1)-DCMPLX(-DIMAG(Q), REALM))
IF (ABS(BJUIP(N)).LT.X.OR.ABS(BHNP(N)) .GT.STCPR) COTO 20

15 CONTINUE
IF(IPRDIA.EC4.2) THEN

WRITE(*,*)BHNP(3),' z BHNP(3)'
END IF
N =N-1

20 IF (N.LT.5) WRITE (6,25) N,Z
25 FOFRMAT(25X,'ONLY',13,' BESSEL FUNCTIONS FORL Z u',IX,2Dl2.4)

RETURN
END

This program stor's.- values of Bessol futintions. Thv titmber N' of B13esel and Hankvl
funct ions ac~tually mttdis devtortiimin by STOP R.
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16 GAUSS - a volume integral of power density

The routine GAUSS integrates the power per unit volume over the volume of the sphere.

FUNCTION GAUSS(LSTART)
* FUNCTION GAUSS(LSTART) Version 5.4 04/4/91 DKC *

* CALCULATE THE TOTAL -_OWER ABSORBED BY THE SPHERE BY DOING A *

* VOLUME INTEGRATION OVER THE SPHERE AND AN AREA INTEGRATION
* OVER IMPEDANCE SHEETS. UTILIZE THE GAUSS QUADRATURE METHOD. *

* Inputs: s
* *

* LSTART INTEGER*4 Starting layer for integration. *

* Inputs (via COMMONs): *

* NORG INTEGER*4 Number of layers in sphere. *

* EPSP() COMPLEX*16 Permittivities of the layers. *
* XMUC) COMPLEX*16 Permeabilities of the layers. *

* SIGP() COMPLEX*16 Conductivities of the layers.
* BDP() REAL*8 Boundaries of the layers (meters). *

* FKP() COMPLEX*16 Propagation constants in the layers.
* STOPR REAL*8 Stop computing Bessel functions *

* when value of last Bessel exceeds •
* STOPR or is less than I/STOPR. *

* EO REAL*8 Scale factor for incident E field. *

* ITYPEO INTEGER*4 Set to 1 if layer has impedance sheet.*

* Outputs: *

* GAUSS REAL*8 Total power absorbed in sphere. *
* ,

c FUNCTION GAUSS(LSTART)
c M-POINT GAUSS-LEGENDRE QUADRATURE

IMPLICIT COMPLEX*16 (A-H, O-Z)
c Variables are transferred via the following COMMON

INCLUDE ICSMCOM.f'
COMMON /PRICOM/IPRINT,IENTR

c PARAMETER (NGAUPT=14) is the max number of GAUSS Q points
c is defined in CSMCOM.f an array of COMMON variables

REAL*8 ARG2, ARG3. D, GAUSS, PD2, PI, RH, RI, R2
REAL*8 SINTH,SUM1,SUM2,SUM3,XMULI,WT, Y, PD, PM, XMUO
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c DIMENSION BJNP3(4,2*NZ,7), BHNP3(4,2*NZ,7), NTEFQ4(1O,2)
c DIMENSION BJNP3(NZ,2), BHNP3(NZI2),

DIMENSION
1 BJNPACNZENGAUPT,2) bBHNPA(NZ,NGAUPT,2),
2 NTERtM(NLAPLO,2) ,BJNPO(NZ) ,BRNPOCNZ)

c234567 where NZ is the number of Bessel function orders and
c where NGAUPT is the no of points at which the Pcssel function
c associatad with that order is evaluated
C

DIMENSION NPOINT(9), KEY(iO), Y(33), WT(33), ARG2(2), ARG3(2)

DATA PI/3. 141592653589793D0/
DATA NPOINT/2,3,4,5,6,8,10,12,14/
DATA KEY/1,2.4,6,9,12,16,21,27,34/
DATA Y/ .57735026918963D0, .OOOOOOOOOOOOOODO, .77459666924148D0,
-k .33998104358486D0, .86113631159405D0, .00000000000000D0,
& .53846931010568D0, .90617984593866D0, ý238619186OS320DO,
& . 66120938646626D0, .93246951420315D0, .18343464249565D0,
& .52553240991633D0, .79666647741363D0, .96028985649754D0,
& .14887433898163D0, .43339539412925D0, .6794095S829902D0,
& .86506336668898D0, .97390652851717D0, .12523340851147D0,
& .36783149899818D0, .58731795428662Db, .7699026741943bDO,
& .904 11725637047Db, .98156063424672Db, . 1085494870734Db,
& .31911236892789D0, .51524863635815Db,. 68729290481169Db,
& .82720131506996Db, .92843488366357Db,. 98628380869681Db!

C

DATA WT/. 1000000000000D1, .88888888888889Db, .55555555555556Db,
& .65214515486255Db, .34785484513745Db, .56888888888889Db,
& .47862867049ý937Db, .23692688505619Db, .46791393457269Db,
& .36076157304814D0,. 171324449237917Db, .36268378337836Db,
& .31370664587789D0, .22238103445337Db, .10122853629038Db,
& .295524224 475D0, .26926671931000Db, .219086362El598D0,
& .14945134915058Db, .06667134430869Db, .24914704581340Db,
& .23349253653835Db, .203 16742672307Db, .16007832854335Db,
& .10693932599532Db, .04717533638651Db, .21526385346316Db,
& .20519846372130Db, .18553839747794Db,. 15720316715819Db,
& .12151857068790Db, .08015808715976Db, .03511946033175D0/

XMUO=4. D-7*PI
M1=14
M2=14
M3= 14
GAUSS =0 DO
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L-0
DO 25 1-1,9

IF (Ml.EQ.NPOINT(I)) THEN
JF1=KEY(I)
JL1-KEY(I+1) -i

L-L+1
END IF
IF (M2.EQ.NPOINT(I)) THEN

JF2uKEY(I)
JL2-KEY(I+1) -1
L-L+1

END IF
IF (M3.EQ.NPOINT(I)) THEN

JF3=KEY (I)
JL3-KEY(I+1) -1

1=L+i.
END IF

25 CONTINUE
IF (L.NE.3) THEN

WRITE(76,*) 'GAUSS-PARAMETER ERROR,
WRITE(76,*)' M1 - ',M1
WRITEC76,*)' M2 = ',M2
WRITEC76,*) M3 -IM
GAUSS-O.DO
RETURN

ENDIF
PD2-PI/2.DO
WRITE(76,*)LSTART,' = LSTART IN GAUSS'
WRITE(*,*)LSTART,' Starting layer for Gauss Quadrature'
WRITE(*,*)NORG,' Ending layer for Gauss Quadrature'
WRITE(76,*)NORG,' Ending layer for Gauss Quadrature'

c We are going to evaluate the Bessel functions at the Gauss
c quadrature points in all layers

WRITE(*,*)NC,l NC'
WRLITE(76,*)NC,' NC or NC passed through COMMON'
WRITE(*,*)NMTN,' - NMIN'
WRITE(76,*)NMIN,' = NMIN as passed through COMMON'r

DO 900 NP=LSTART, NORG
WRITE(*,*)IIP,' = current layer numnber for integration'
ISKIP-1

C

c DO VOLUME INTEGRATION ONLY IF PROPERTIES DIFFER FROM FREE SPACE
c
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IF (EPSP(NP).NE.1.DO) ISKIP-O

IF (SIGP(NP).NE.O.DO) ISKIP=O
5 CONTINUE

IF (ISKIP.EQO) THEN
c*s*******We are really integrating over LAYER = NP and set

p c****the values of R2 and RI
LAYER-NP
R2-BDP (NP)
AM=FKP(NP)

IF (NP.EQ.1) THEN

Ri=O.DO
ELSE

RI-BDP (NP-1)
ENDIF
D= (R2-Ri) *2.DO
RH-D/4,JO
SUM3=O.DO

cxxxxxxxxx
c COMPUTE AND STORE NEEDED BESSEL FUNCTIONS TO SAVE TIME
Cxxxxxxxxx

IF ( NMIN .GT. NZ ) THEN
WRITE(76,*)'Too many Bessel Functions needed in GAUSS'
WRITE(*,*)' NMIN exceeded NZ in GAUSS'

GAUSS-O. DO

RETURN
ENDIF

c J2 is the index for the Radial variable with
c 3F2 and JL2 being array indices for Gauss Q array
c for selecting points.

DO 40 32-JF2, JL2
IF (Y(J2).EQ.O.DO) THEN

ARG2 (1) =RI-+R1

12ui
WRITE(76,*)ARG2(1),' = ARG2(1)'
WRITE(76,*)J2,' = J2'
WRITE(76,*)' Stopping program'

STOP

ELSE
ARG2 (1) =RHeY (J2) *RH+Ri

ARG2 (2)=RH-Y(J2) *R•I+R1
c

c Note that ARG2(1) is equal to (B-A)/2 + Y*(B-A)/2 + A
c s*')** A + (I+Y)B/2 (1+Y)A/2 =
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C ** A/2 + B/2 + (Y*(B-.A)/2)
c and similarly
c AIRG2(2) = (A+B)/2 - Y*(B-A)/2

I2=2
END IF
WNRITE(76, 5433)12,J2 ,ARG2(l) ,ARG2 (2)

5433 FORMAT(15,' - 121,15,1 - 321,IPD15.7,D1S.7,' =ARG2(1,2)')
DO 39 121,12

Z-AM*AFLG2 (1)
IF(ARG2(I) .GT.BDP(NORG)) THEN

WRITE(*,--)' Error in ARG2(I)
WRITE(*,*) I STOPPED in GAUSS'
STOP

ENDIF
c We have two values of Z, one for the left half of the
c interval corresponding to I = 2 and the other for the righL
c halt of the interval of integration I = 1.
c CALL BJYH2(BJNP2. BH-NP2, Z, NCC, STOPPR, LAYER~)

LAYER - NP

CALL BJYH(BJNPO ,BHMPO , Z,NCC, STOPR)
C

IF(NCC.GT.NMIN) THEN
IF(IPRINT.EQ.O) THEN

WRtITE(*,*)Z,' Z

WRITE(*,*)NCC,' NCC after CALL DJYI{'
ENDIF
NCC =NMIN

ENDIF

IF(IPRINT.EQ.O) THEN
WRITE(*,*)NCC,' = TCC after CALL BJYH'
WRITE(*,*)NC,' - NC before CALL BJYH1
WRITE(76,*)NCC,,' = NCC after CALL BJYH'
WRITE(76,*)NC,' NC before CALL BJYH)
WRITE(76 ,1132)

1132 FORMAT(25x, IBJNPO',25x,3BHN'!J))

DO 1134 IBSL = 1,NCC

WRITE(76,1133)BJIIPO(IBSL) ,BHNPO(IBSL)

1133 FORMAT(1PD15.7,D15.7,2D15.7)

1134 CONTINJUE

IPRIUT = IPRINT+1

ENDIF
c ,LAYER) is not included as argument in BJY1I
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c We are getting spherical Bessel and Hankel functions
c of orders 1 through NCC with values not exceeding STOPR and
c are storing them temporarily in BJNPO and BHNPO

IIJ-J2-JF2+1
c J2 is the Gauss Q index and JF2 is the starting index
c which makes IIJ an index starting at I which runs from
c I to 14, say, if there are 14 Gauss q points.

NTERM(IIJI)=NCC
DO 38 II=1,NCC

c DO 37 JJ=1,2
BJNPA(II,IIJ,I)-BJNPO(II)
BHNPA(II,IIJ,I)=BHNqPO(II)

c This array contains the orders and the arguments
c of the Bessel functions as the orders range from 1 to NCC and the
c arguments range over the Gauss Q points.

37 CONTINUE
38 CONTINUE
39 CONTINUE
40 CONTINUE

c

c INTEGRATE OVER THETA
c

DO 85 J3-JF3, JL3
IF (Y(J3).EQ.0.DO) THEN

ARG3(1)=PD2
13.1

ELSE

ARG3(1)=PD2+PD2*Y(J3)
ARG3(2)=PD2-PD2*Y(J3)
I3-2

ENDIF

DO 84 L=1,13
THETA-ARG3(L)

SINTH-SIN(THETA)
CALL PL(THETA,NMIN,P,DP)

c

c INTEGRATE OVER RADIUS
c

SIJI2=O. DO

DO 80 J2=JF2, JL2
IF (Y(J2).EQ.0.DO) THEN

ARG2(1)=RH+Rl
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12-1
ELSE

ARG2( 1) PJi+Y(J2)*RH+Rl
ARG2 (2) =RH-Y(J2)*RH+Rl
12-2

END IF
DO 79 1-1,12

R-ARG2(I)
Z-AM*R
IIJ-J2-JF2+1

c IIJ runs from 1 to 14 if their are 14 Gauss points
MCC-NTERM(IIJ, I)

c MJC is the number of Bessel functions

DO 60 II-1,NCC
c II is the order of the Bessel or Hankel function
c DO 59 JJ-1,2
c K-2*I+JJ-2

BJNP(II)-BJNPA(II, IIJ, I)
BI{NP(II)-BI{NPA(II,IIJ,I)

59 CONTINUE
60 CONTINUE

*INTEGRATE OVER Pill

SUMI-O.DO

DO 75 J=JF1, JL1

If (Y(J).EQ.0.DO) THEN
PHI-PI
XMUL1-1.DO

ELSE
PHI*PI+Y(J) ePI I

XM1JL1v2.DO
ENDIF

c We know AM and R and these are passed through COMMON

IF(IPRINT.EQ.1) THEN
WRITE(*,*)IIP,' - NP'

WRITE(*, 1139)
1139 FORLMAT(25x,'BJNP',25x,'BHNP')

DO 1142 IBSL a 1,NCC

WRITE(*, 1141)BJNP(IBSL) ,BHUIP(IBSL)

1141 FORMAT(2(1PD15.7,D15.7))
1142 CONTINUE
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IPRINT = IPRINT+1
ENDIF
NCOLD - NC
NC - NCC-2

CALL EVECCNP, PD)
NC -NCOLD

c Z) is passed through common
IF(PD.GT.I.D17) THEN
WRITE(*,*)Z,' = Z'
WRITE(*,*)NP,' - NP'
WRITE('s,*)R,' - R'
WRITE(*,.P)THETA,' = THETA'
WRITE(*,*)PHI,' PHI'

WRITE(*,*)ERAD,' E.RAD'
WRITE(*,*)ETHETA,' a ETHETA'
WRITE(*,*)EPHI.' - EPHI'

WRITE(*,*), STOPPING program in GAU'3S.f'

STOP
END IF
PD=EO.EC*. 5D0'PD

c CALL MVEC(NP, PM, Z)

PM aO.DO
c Assuming a nonmagn~etic sphere

c PM-EO*EO*. SDO*PM
SUMISIJM1+XMULI*WT(J) *(PD+PM)

75 CONTINUE

SUM2 a SUM2+WT(J2)*SUM1*ARG2(I)**2
79 CONTINUE

80 CONTINUE
SUM3-SUM3+WdT(J3) *S1B12*SINTH

84 CONTINUE
85 CONTINUE
GAUSS-GAUSS+SUM3*PD2*PRH*PI

END IF
900 CONTINUE

930 CONTINUE
ISFLAG-1
WRITE(*,417) GAUSS

417 FORMAT(' Total Absorbed Power from Gauss IntegrationL

1 1PD15.8,,' Watts,')
RETURN
END

Thfw -ud vaii of GAUSS is rhif tortal ab1sorI mu po w''r. Tir' oi-igina~l G AUSS wio wvrit r ii
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with Earl Bell and John Penn.

17 GETEC for obtaining expansion coefficients

The rou .ne GETEC gives us back expansion coefficients from the electric vector of the
scattered radiation.

SUBROUTINE GETEC(RADIUS, ALPNM, BETNM)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
COMPLEX*16 ALPHC, ALPNM, BETNM, BTNMI,BTNM2,BTNM3, BTP 12,

I BTP23,BTERAD,
2 CHFR12,CHFR23, CI, CSTNR, CXALPF, FUNAL, SURINC, ZBFA, CFITST,FNTST

c23456
INCLUDE 'CSMCOM.1'
EXTERNAL FUNAL, BTERAD, FNTST
DATA PI/3. 14159265358979323D0/
CI - (O.DO,1.DO)
BETNM a CI

c IPRDIA is a diagnostic printing index
IPRDIA a 0

c We are initializing this printing index to zero
c
c CSTNR is a normalization constant that must be
c divided into the expansion c"efficient determined
c by numerical integration in order to get the expansion
c coefficient determined by solving the system of
c linear equations based on orthogonality relations

R - RADIUS

WRITE(*,*)RADIUS,' " RADIUS in GETEC.f'
WRITE(*,*)BDP(IlORG),' - BDP(NORG) in GETEC.f'
RADPD a PI/180,DO
IF(RADIUS.LT.BDP(l)) THEN

WRITE(*,*)RADIU3,' - RADIUS is too small'
END I F
IF(RADIUS.GT. 1.D1*BDP(NOP.G)) THEN

WRITE(.,*)RADIUS,' a RADIUS is too large'
WRITE(*,*)' Stopping program'
STOP

ENDIF
ZBFA - FKP(NORG+I)*RADIUS
WRITE(*,*)ZBFA,' - ZBFA in GETEC.f'
IPRDIA - 2
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CALL BJYH (BJIIP, BHNP,ZBFA, NC, STOPR)
WRITE(*,*)' Finished calling Bessel functions in GETEC.f1
IPRDIA - 0
WRITEC*,*)BHNP (3),' h-.2(FKP(NORG+1)*RADIUS)'
WR.ITE(*,*), Finished CALL BJYH in GETEC1.f'

IP WRITE(*,*)NC,' = NC after CALL BJYH in GETEC.f'
WRITE(*,*)NMIN,' a NMIN after CALL BJYH in GETEC.f'
IF(NC.GT.NMIN) THEN

NC a NMIN-2
ELSE

NC - NC-2
ENDIF

c ZBFA is the complex Bessel Function Argum~ent
c We call the Bessel functions with this argument
C

c We are going to get ;rical value of the expansion
c coefficients ALPHA and ;he index N equal to NVAL

ISIND = 0
NGQPTS n 16
NYAL - 2
NSITH = NVAL
NSIPH a UVAL
WRITE(*,*)' About to call SIJRINC with FNTST as arg.'
CFNTST-SURINC(RADIUS,FNTST,NGQPTS, ISING,NSITH,NSIPH)
WRITE(*,*)CFNTST/(PI*RADIUS*RADIUS),I -'
WRITE(*,*)' (output from SURINC with FIITST)/(PI*RADIIJS**2)'
F2 - 2.DO
F3 - 3.DO
EVAL-(2.DO/(2.DO*F2+1.DO))*((F2*(F2+1.DO))**2)
EVAL3u(2.DO/(2.DO*F3+1.DO))*s((F3*(F3+1.D0))**2)
WMITE(*,*)EVAL,' exact value of real part'
WRITE(*,*)EVAL3,' exact value of imag part'

'V ISIND a0
WRPITE(*,*) ' We are about to call SURINC with FUNAL as arg'
ALPHC-SIJRINC (RADIUS ,FUNAL, NGQPTS ,ISIND , USITH ,NSIPH)
FN a FLOATCNAL)
CXALPF =
IPI*(CI**NVAL)*FN*(FN+1.DO)*R*R*BHNP(NVAL+1)*2.DO
WRITE(*,*)CXALPF,l u pi*i**N)*fl*(N+1)*R**2*jHfn(k*R)*2'

ACX a ABS(CXALPF)
IF(ACX.EQ.O.DO) THEN

WRITE(*,*)' Error in GETEC'
WRITE(*,*)' Stopping in GETEC after ALPHC=SIJHINC'
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STOP
END IF
ALPHC - ALPHC/CXALPF
WJPITE(ss,')ALPHC,' a ALPHC after ALPHC - SURINC'
WRITE(*,*)' We have finished this call to SURINC in GETEC.f'

C

c (N.1)1/1N-1)1 - (N+0)**(N-i0f/(N-1 a N*(N~e.)

-DN NVALS(NVAL+I)
IF(RDEN.LE.O.DO) THEN

1JRITE(*,*)NVAL1' - NVAL. in GETEC.f'
WRITEC'..) Stopping program in GETEC~f'
STOP

END IF
RATIO = (2'.NVAL,1)/RDEN
CSTNR -

1(PI'.BHNiP(NVAL+l))'.(CI'.*NVAL)'.FN's(FN+1.DO)*R*R'.Cl'*Ii
c ALPHC - ALPHC/CSTNR

ALPNM - ALPHC
WRITE('.'.)ALPNM,' a Computed ALPHA expansion coefficient'
WRITE('.,*)ALPNIPCNORG'.NMIN.NVAL),' - ALPMP(NORG*UMIN.+JVAL)'
WRITE(*,*)ALPHC/ALPNP(NORG'.NMIN4.NVAL),' -1
WRbITE(*.,*)' ALPHC/ALPNP(NORG*NMIN+IfJAL)'
WRITE( ,*') NORG'.NMIMN&VAL,' a NORG*NMIN+.WVAL'

ISIND - 0
?JSITH - 4
NSIPH - 4
.IPESIN a 1234
IPRDIA a 1234
NVAL - 2
BETNM - SUaIUC(RADIUSB7ERAD,NGQPTS,ISIND,NSITH,IN5IPH)
BETNM - BETUM/(RADIUS*.PADIVS)

c Diagnostic printing
WRITE('.,')NVAL,' NVAL'
WRITE(*,a)BETNM,' BETNM from GETEC.f after call SLJRINC'
WRITE(*,*)BETNP(NORG*NM.IJ+NVAL),' a BETTUP(NORG*NMIN +2)'
WRITE(*,s)BETNM/BETU4P(NORLG'NMIN..2),I -mBETNM/BETNP(N)'
WRITE(*,'.)NORG*U1MtIN2,' NORG*NMIN+2'
BTNM2 -BETNM

c
NVAL -1

IPESIN - 1234
IP$.DIA = 1234
ISIND -0
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c

BETNM - SURINC(RADIUS,BTERAD,NGQPTS,ISIND,NSITHYNSIPH)
BETNM - BETNM/(RADIUS*RADIUS)

c Diagnostic printing
WRITE(*,*)NVAt.,' N VAL.'
WRITE(*,*)BETNM,' *BETNM from GETEC.f after call SURINC'
WRITE(*,*)BETNP(NORG*NMIN+1),' = BETNP(NOPRG*NHIN +01)
WRITE(*,*)BETNM/BETNP(NORG*NMIN+1),I -BETNM/BETNP(N)'

4 ~WRITE(*,*)NOPRGl*NMIN+1,' m NORG*NMIN+1'
BTNM1 - BETNM
WRITE(*,*)BTNMI/BTNt42,' x BETANM(1)/BETANM(2)'
BTP12 u BETNP(NORC*flMIN+1)/BETNPCNORGsNMIN+2)
WRITE(*,*)BETNP(NORG*NMIN+1)/BETNP(NORG'WMIN+2d),I
WRITE(*,*), BET.NP(NORtG*NMIN+1) /BETNP(NO1RGelMIN+2)'

C

CHFR12 - BHNP(NVAL+2)/BHNP(NVAL.1)
WRITE('*,*)CHFR12,' - BHNP(NVAL+2)/BHNP(NVAL+I)'
WRITE(.,*) (BTNMI/BTNM2)*CHFR12,' a BTNM1/BTNM2*CHFR12'
WRITE(*,.)BTP12*CHFR12,' - Betal/Beta2 * Hankel2/Hankell'

C

NVAL a 3
IPESIN - 1234
IPRDIA a 1234
ISIND - 0

C

BETUM - SURINC(RADTUS,BTERAD,UIGQPTS,ISIIUD,USITH,IISIPH)
BETNM a BETNM/(RADItJS*PbADIUS)

c Diagnostic printing
WA1TE(*h*)NVAL,' NVALI
WRITE(*,*)BETNM,' BETNM from GETEC.f after call SURIJC'
WR1TE(*,*)BETNP(NORG*NMIN+3),' - BETNP(t1OPG*?ThIf +3)'
WRITE(. 5.)BETNM/BETNP(NORG*NMIN+3),I wBETNM/BETlP01)'
WRITE(*.*)NORG*NMIN+3,' a NORG*NMINV+3'
BTNM3 w BETNM

WRbITE(#,*)BTlNH2/BTN1M3,' - BE'CANM(2)/BETANMC3)'
BTP23 - BETflP(NOPRG.UMIN.2) /BETNP(NORG*NMIN.3)
WRITE(*,*)BETNP(flOptG*flMIN+2)/BETIIP(NORG*NMIIn.3),I -I
'4RITE(*,*)' EETNIP(1JORGeflMIrI.I)/BETrNP(NORG*NMIN.2)'

c
CHFRb23 a BHflP(NVAL.3)/BHNPCNVAL.2)
WRITE(#,*)CHFR12, ' m BHNP(NVAL+3)/BHNP(NVAL+2),
WRITE(* ,*) (BTUIM2/BTNIM3) *CHFR23,' - BTNM2/BTNM3*CHFR23'
WRITE(*,*)BTP23*CHFR23,J - Beta2/Beta3 * Hankel3/Hankel'2'
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RETURN
END

This routine shows the capapility of recovering expansion coefficients from the electric
vector of the scattered radiation by comparision with actual known values.

18 Jacobian Determination

The routine FDJAC2 was rewritten by Alfred Morris as a part of a Levinberg Mar-
quardt algorithm. The original was written by Hillstrom. Garbow, and Mor,! (f21). This
uses discrete approximations to compute a Jacobian associated with N1 functions in N
independent variables.

SUBROUTINE FDJAC2(FCN,M,N,X,FVEC,FJAC,LDFJACIFLAG,EPSFCU,WA)
INTEGER M,N,LDFJACIFLAG
REAL*8 EPSFCN
REAL*8 X(N),FVEC(M),FJAC(LDFJAC,N),WA(M)
EXTERNAL FCN

C
C
C SUBROUTINE FDJAC2
C
C THIS SUBROUTINE COMPUTES A FORWARD-DIFFERENCE APPROXIMATIED
C TO THE M BY N JACOBIAN MATRIX ASSOCIATED WITH A SPECIFIED
C PROBLEM OF M FUNCTIONS IN N VARIABLES.
C
C THE SUBROUTINE STATEMENT IS
C
C SUBROUTINE FDJAC2(FCNMNXFVECFJACLDFJACIFLAGEPSFCUWA)
C
C WHERE
C
C FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
C CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
C IN AN EXTERNAL STATEMENT IN THE USER CALLING
C PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
C
C SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
C INTEGER M,N,IFLAG
C REAL X(N),FVEC(M)
C
C CALCULATE THE FUNCTIONS AT X AND
C RETURN THIS VECTOR IN FVEC.
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C --

C RETURN

C END
C
C THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS

C THE USER WANTS TO TERMINATE EXECUTION OF FDJAC2.
C IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.
C
C M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF FUNCTIONS.
C
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF VARIABLES. N MUST NOT EXCEED M.
C
C X IS AN INPUT ARRAY OF LENGTH N.
C
C FVEC IS AN INPUT ARRAY OF LENGTH M WHICH MUST CONTAIN THE
C FUNCTIONS EVALUATED AT X.
C
C FJAC IS AN OUTPUT M BY N ARRAY WHICH CONTAINS THE
C APPROXIMATION TO THE JACOBIAN MATRIX EVALUATED AT X.
C
C LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
C WHICH SPECIFIES Tf!7 LEADING DIMENSION OF THE ARRAY FJAC,
C
C IFLAG IS AN INTEGER VARIABLE WHICH CAN BE USED TO TERMINATE
C THE EXECUTION OF FDJAC2. SEE DESCRIPTION OF FCN.
C
C EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE
C STEP LENGTH FOR THE FORWARD.-DIFFERENCE APPROXIMATION. THIS
C APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE
C FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS
C THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE
C ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE
C PRECISION.
C
C WA IS A WORK ARRAY OF LENGTH M.
C
C SUBPROGRAMS CALLED
c
C USER-SUPPLIED ...... FCN
C
C MINPACK-SUPPLIED ... SPMPAR
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C
C FORTRAN-SUPPLIED ... ABS,AMAXI,SQRT

C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C

INTEGER I,J

REAL*8 EPS,EPSMCH,H,TEMP,ZERO

REAL-8 SPMPAR, DPMPAR
c DATA ZERO /O.OEO/

DATA ZERO /O.ODO/
C
C EPSMCH IS THE MACHINE PRECISION.
C

EPSMCH w SPMPAR(1)
WRITE(91,*)EPSMCH,' - SPMPAR(1) in FDJAC2'
EPSMCH = DPMPAR(1)

c WRITE(91,*)EPSMCH,' a DPMPAR(1) in FDJAC2'
C
c EPS , SqRT(AMAX1(EPSFCN,EPSMCH))

EPS - SQRT(DMAXI(EPSFCN,EPSMCH))
DO 20 J - 1, N

TEMP - X(J)
H - EPS*ABS(TEMP)

IF (H .EQ. ZERO) H - EPS
X(J) a TEMP + H

CALL FCN(M,N,X,WAIFLAG)
IF (IFLAG .LT. 0) GO TO 30
X(J) - TEMP
DO 10 1 - 1, M

FJAC(I,J) - (WA(I) - FVEC(I))/H
10 CONTINUE
20 CONTINUE
30 CONTINUE

RETURN
C
C LAST CARD OF SUBROUTINE FDJAC2.
C

END
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19 FUNAL - a function that gives a expansion coef-
ficients

The function subroutine FUNAL gives us the a expansion coefficients by making use
of orthogonality of the vector spherical harmonics used to represent the electric vector of
the scattered radiation.

FUNCTION FUNAL(THETGQ,PHIGQ)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)

c This will give us an expansion coefficient ALPNP(NN+N)
c by performing the integration of the proper function FUNAL
c over the surface of the sphere

COMPLEX*16 CI,FUNAL
INCLUDE 'CSMCOM.f'
CI - (O.DO,i.DO)
PI = 3.14159265358979323D0

c

c There are no more than NZ Legendre functions
c The particular index is passed through common
c having the name COMMON/FALBT/RADOFC,NVAL
c RADOFC - radius for the function calculation
c NVAL - the Legendre function index

THETA - THETGQ
NCPO NC+I
IF(NCPO.GE.70)THEN

WRITE(*,*)NC,' = NC in FUNAL.f'
WRITE(*,*)' Stopping program in FUNAL.f'
STOP

ENDIF
CALL PL(THETA,NCPO,P,DP)

c Next we call the EVCSC which give us the electric
c vector of the scattered radiation in the THETA and PHI directions

PHI - PHIGQ
SINTH - DSIN(THETA)
COSTH = DCOS(THETA)
SINPHI = DSIN(PHI)
COSPHI = DCOS(PHI)

c
IF(SINTH.EQ.O.DO) THEN

WRITE(*,*)THETA,' = THETA'
WRITE(*,*)PHI,' = PHI'
WRITE(*,*)' Stopping program in FUNAL.f'
STOP
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ENDIF
IF(IPPDIA.LT. 10) THEN

WRITE(*,*)' About to call EVCSC in FUNAL',NVAL,' - NVAL'
IPRDIA - IPRDIA + I
WRITE(*,*)ALPNP(NORG*NMIN + NVAL),1 - ALPNP(NORG*NMIN+NVAL)'
WRITE(*,8765)COSPHI,SINTH,SINPHI,THETA,180.DO/PI
WRIIE(*,*)B%NP(3),' = BHNP(3) in FUNAL.f'

8765 FORMAT(1PD15.7,3D15.7,' = COSPHI,SINTH,SINPHI,THETA1)
ENDIF
NP - NORG.'1

R BDP(NORG)
CALL EVCSC(NORG+I,PD)
FUNAL = ( ( ETHESC*P(NVAL)/SINTH )*COSPHI

1 - EPHISC*DP(NVAL)-SINPHI )
RETURN
END

20 FNBET for expansion coefficients

The function FNBET gives us a function which when integrated over the surface of a
sphere gives us the 3 expansion coefficients of the scattered radiation.

FUNCTION FNBET(THIETGQ,PHIGQ)
c This will give us the expansion coefficient
c BETNP(NN+N) by performing the integration of
c the complex valued function FNBET over the surface
c of the sphere

IMPLICIT DOUBLE COMPLEX(A-HO-Z)
DOUBLE PRECISION THETGQ,PHIGQ,PD,SINTH,COSTh,SINPHI,
1 COSPHI

INCLUDE 'CSMCOM.f'
c RADOFC - radius of the sphere over which the
c integration is carried out.
c NVAL - the Legendre function index

THETA * THETGQ
PHI = PHIGQ
CALL PL(THETA,NC,P,DP)

c Next we shall call EVCSC which will give us the electric
c vector of the scattered radiation's components in the
c THETA and PHI coordinate directions

COSTH = DCOS(THETA)

SINTH =DSIN(THETA)
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COSPHI - DCOS(PHI)
SINPHI - DSIN(PHI)
CALL EVCSC(NORG+1,PD)
FNBET = ETHESC*DP(NVAL)*DCOS(PHI) -
1 EPHISC*(P(NVAL)/DSIN(THETA))*DSIN(PHI)
RETURN
END

21 SURINC - accurate surface integration routine

This routine give, a way of accurately integrating any function over the surfaco of a

sphere by Gaussian quadrature.

FUNCTION SURINC(RADIUS,FUNC,NGQPTS,ISIND,NSITH,NISIPH)
c SURFACE INTEGRAL OF A REAL FUNCTION

IMPLICIT DOUBLE PRECISION(A-H. O-Z)
COMPLEX*16 SURINC,CZFRO,FUNC,SUMPHSUMTH
DIMENSION XI16(16),WT16(16),X16TI4(16,28),X16PH(16,28),
1 W16TH(16,28),W16PH(16,28),

2 WT12(12),XI12(12)
c RADIUS = the radius of the sphere over which the surface
c integral is being carried out
C FUNC = a ccmplex valued function of THETA and PHI
c which is to be integrated over the surface
c of a sphere
c NGGPTS = the number of Gaussian Quadrature points used
c in carrying out the surface integration
c ISIND a an index which is set to 0 the first time
c the suface integration is being carried oat
c and when this is zero and NGQPTS is 16 we
c carry determination of weights and quadrature
c points
c NSITH =the number of subintervals into which the azimuthal
c and coordinate range is subdivided
c NSIPH -che number of subintervals into which the equatorial
c coordinate range is subdivided

DATA XI16/-.989400934991649932DO, -. 944575023073232576DO,
I -. 865631202387831743D0,-.755404408355003033D0,
2 -. 617876244402643748D0,-.458016777657227386D0,
3 -. 281603550779258913D0, -. 095012509837637440D0,
4 +.095012509837637440D0, .281603550779258913D0,
5 +.458016777657227386D0,+.617P76244402643748Do,
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6 ÷.755404408355003033DO,+.865G31202387831743DO,
7 +.944575023073232576DO,+.989400934991649932DO/

DATA WT16/+.027152459411754094DO,+.062253523938647892DO,
1 +.095158511682492784DO,+.124628971255533872DO,
2 +.149595988816576732DO,+.169156519395002538DO,
3 +.182603415044923588DO,+.189450610455068496DO,

4 *.189450610455068496D0,+.182603415044923588D0,

5 +.169156519395002538DO,+.149595938816576732DO,
6 +.124628971255533872DO,+.095158511682492784DO,
7 +.062253523938647892DO,+.027152459411754094DO/

DATA XI12/-9.81560634246719D-1,-9.04117256370475D-1,
1 -7.69902674194305D-1,-5.87317954286617D-1,
2 -3.67831498998180D-I,-1.25233408511469D-1,
3 1.25233408511469D-1, 3.67831498998180D-1,
4 5.873179542866171-1, 7.69902674104305D-1,
5 9.04117256370475D-1, 9.81560634246719D-1/

DATA WT12/ 4.7175336386512D-2 , 1.06939325995318D-1,
I 1 .60078328543346D-1. 2.03167426723066D-1,
2 2.33492536538355D-1, 2.49147045813403D-1,

3 2.49147045813403D-1, 2.33492536538355D-1,
4 2. 03167426723066D-1, 1. 60078328543346D-1,
5 1.06939325995318D-1, 4.7175336386512D-2/

DATA PI/3.14159265358979323DO/
c Other important variables are listed as follows
c ATM = the starting point for the Gaussian Quadrature
c in the Kth subinterval of the azimuthal THETA

c coordinate
c BTH = the ending point for the Gaussian quadrature

C in the Kth subinterval of the azimuthal THETA
C coordinate
c APH = the starting point for Gaussian quadrature in the
C Lth subinterval of the equatorial PHI coordinate
c BPH - the ending point for Gaussian quadrature in the Lth
c subinterval of the Pquatorial PHI coordinate
C

WRITE(*,1111)RADIUS,NGQPTS,ISINID,NSITH,NSIPH
1111 FORMAT(IPDI5.7,4I5,' = RADIUS,NGQPTS,ISIND,NSITH,NSIPH')

ZERO = O.DO

CZERO = DCMPLX(ZERO,ZERO)

IF((NSITH.GT,28).01.(NSIPH.GT.28)) THEN
WRITE(*,*)' You used the wrong value of'

WRITE(*,*)' NSITH or NSIPH'
WRITE(*,*)' Neither can exceed 28'
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WRITE(*,*)NSIPH,' = NISPII'
WRITE(*,*)NSITH,' = NSITH'
WRITE(*,*)' Stopping program in SURINC'
STOP

END IF
IF((NGqPTS.NE.16).AND.(NGQPTS.NE.12)) THEN

WRITE(*,*)' You used the wrong value of NGQPTS'
WRITE(*,*)NGQPTS,' = NGQPTS'
WRITE(*,*)' stopping program in SURINCI
STOP

END IF
c The first loop takes care of the case where
c NGQPTS = 16

IFC(ISIND.EQ.O).AND.(NGQPTS.EQ.16)) THEN
DO 7 K - 1,NSITH
ATH a FLOAT(K-1)*PI/FLOAT(NSITHi)

BH- FLOAT(K)*PI/FLOAT(NSITH)
C

DO 2 ITH - 1,NGQPTS
YITH -. SDO*((BTH-ATH)*XI16(ITH) + CBTH+ATH))
X16TH(ITH,K) aYITH
c We obtained the ITH Gauss Q pt in the Kth subinterval
W16TH(ITH,K) -,5DO*((BTH-ATH))*WT16(ITH)
c We obtained the ITH weight in the Kth subinterval

2 CONTINUE
c

7 CONTINUE

c234567
DO 6 L a1,NSIPH
APH z FLOAT(L-1)*2.DO*PiFLOAT(NSIPH)
BPH - FLOAT(L)*2.DO*PI/FLOAT(NSIPH)
c
DO 5 IPH a ,NGQPTS
YIPH = .5D0*((BPH-APH)*XI16(IPH) +(BPH+APH))
X16PH(IPH,L) - YIPH
W16PH(IPH,L) - .5D0*(BPH- APH)*WT16(IPH)
IF(W16PHCIPH-,L).LT.O.DO) THEN

'WRITE(*,*)' ERROR in StJRINC'
WRITE(*,*)IPH,l = IPH'
WRITE(*,*)L,' = L
WRITE(*,*)WT12(IPH),' = WT12(ik,0'
`WRITE(*,*)APH,1 = APH'
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IJRITE(*,*)BPH,' BPH'
STOP

END IF
c WRITE(22,1022)L,IPH,X16PH(IPH,L),W16PHCIPH,L)
c1022 FORMAT(I5,15,1PD15.7,D15.7,' -LIPH,X16PH(IPH1L)',
c 1 ',Wi6PH(IPH,L)')
c We obtained the IPH Gauss Q point in the Lth subinterval

5 CONTINUE
6 CONTINUE
ENDIF

c

c This loop tak~es care of the case where NGQPTS =12

IF((ISIND.EQ.O).AND.(NGQPTS.EQ.12)) THEN
DO 127 K - 1,NSITH
AT FLOAT(K-1)*PI/FLOAT(NSITH)

BTH - FLOAT(K)*PI/FLOAT(NSITH)
C

DO 122 ITHa 1,NGQPTS
YITH - .5D0*((BTH-ATH)*X112(ITH) + (BTH+ATH))
X16TH(ITH,K) - YImH
c We obtained the ITH Gauss Q pt in the Kth subinterval

W16TH(ITH,K) - .5D0*((BTH-ATH))*WT12(ITH)
c We obtained the ITH weight in the Kth subinterval

122 CONTINUE
C

127 CONTINUE
c234567
DO 126 L. - 1,NSIPH
APH - FLOAT(L-1)*2.DO*PI/FLOAT(NSIPH)
BPH- a FLOAT(L)*2.D0*PI/FL0AT(NSIPH)
c
DO 125 IPH - 1,NGQPTS
YIPH - .5DO*((BPH-APH)*XI12(IPH) +(BPH+APH))
X16PH(IPH,L) - YIPH
W16PH(IPH,L) - S5DO*(BPH- APH)*WT12(IPH)
IP(W16PH(IPH,L) .LT.O.DO) THEN

WRITE(*,*), ERROR in SURINC'
WRITE(*,*)IPH,' = IPHI
WRITE(%*.*)WT12(IPH),' = WT12(IPH)'
WRITE(*,*)APH,' APH'
WRITE(*1i.)BPH,' BPH'
STOP

ENDIF
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c We obtained the !PH Gauss Q point in the Lth subinterval
125 CONTINUE
126 CONTINUE

END IF
C

SUMTH - CZERO

DO 21 K m 1,NSITH
DO 20 ITHf - 1,NGQPTS
SI NTH - DSIN(X16TH(ITH,K))

C WRITE(22,1122)K,ITI{,Xi6TH(ITH,K),SINTH

c1122 FORKAT(15,15,D15.7,D15.7,,' m K,ITH,X16TH(ITH,K),SINTH')
SUMIPH - CZERO
DO 16 L a 1,NSIPH
DO 15 IPH m 1,NGQPTS
SUMPH - WI6PH(IPH)L)*FUNC(X16TH(ITH,K),X16PH(IPH,L))+StJNPH

C
c WRITE(22,*)SUMPH,' - SUMPH'

15 CONTINUE
16 CONTINUE

SUMTH - SUMTH + SUMPH*SINTH*W16TH(ITH,K)
20 CONTINUE

21 CONTINUE
SURINC - SUMTH*(RADIUS*RADIUS)
RETURN

END

This is the end of the surface integration routine.

22 FNTST fo~r testing SU~RINC

The foflowing function has a known surface inreigral atid rivvs us a way of (Ilimkillg
SURINGC.

FUJNCTION FNTST(THETA,Plil)
IMPLICIT DOUBLE PRECISION(A-'{,O-Z)
COMPLEX*16 FNTST
DIMENSION P(70) ,DP(',O)
COMMON /FNPARM/NVAL
ZEPAO - O.Do
N a30~
SINTh: = DSIN(THELTA)
CO'-Tll = D(N5S(THETA)
CSPH = DC'OS(PHI)
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SNPH - OSINCPHI)

CSPHSQ - CSPH*CSPF,
SNPHSQ a SNPH*SNPH
CALL PL(Th[ETA,NPDP)
NVAI. - 2

C

IF(ABS(SINTH) .LT.I1.D-4) THENJ
PNOSN -DP(NVAL)/COSTH
PNOSNP -DP(NVAL+I)/COSTH

ELSE
PNOSN *P(NVAL)/SINTH
PNOSNP -P(NVAL+1)/SINTH

ENDIF
c Just called the Legendre function routine

RLPT - CDCOS(PHI)*PNOSN)**2 +

1 (DSIN(PHI) *DP(NVAL)) **2
IFCRLPT.LE.O.DO) THEN

WRITE(*,*)RLPT,' a ((P(NVAL)/SIN(THETA))*COS(PHI))**2+'
WRITE(*,*)' (DP(NVAL)*SIN(PHI))**2 Y

WRITE(*,*)PNOSN,' w P(NVAL)/SIN(THETA)'
WRITE(*,*)NVAL,' - NYAL'
WRITE,(*,*)THETA*180.DO/PI,' = THETA*18O.DO/PI'
WRITE(*,*)' Programi stopped in FNTSTI
STOP

ENDIF
CXPT - CSPHSQ*(PNOSNP**2)+
1 SNPHSQ*(DP(NVAL+1)**2,)
IF(CXPT.LT.O.DO) THEN

WRITEC.,*)CXPT,l - PNOSN*E2.DP(NVAL)**2'
WRITE(*,*)' Error in FNTSTI
STOP

ENDIF
FNTST a DCMPLX(RLPT,CXPT)
RETUPN
END

23 FUNG - a test function for minimization

Ths test, function has the .anio struwttln' as FUNCD andI si1Iuj)y showvs that wo g(rot
e~xartly the same valti#'s of Pxparisioi coefficients as werer dcrernined by COEF.

SUBROUTINE FUNC(M,N,XARRAY,FVEC, IF1.AG)
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IMPLICIT REAL*8 (A-H,O-Z)
INCLUDE 'CSMCOM.f'
COMMON /FNCOM/IPRNDX

c NORGF is passed from COMMON CSMCOM.f by MAIN
c NMINF is passed from COMMON CSMCOM.f by COEF after
c computing the expansion coefficients

DIMENSION XARRAY(N) ,PEC(M)
IF(N. LT .3*NORGF) THEN

WRITE(*,*)' Error in SUBROUTINE FUNC'
4 WRITE(*,*)N,' - N'

WRITE(*,'P)NORGF,' a NORGF'
WRITE(*s,*)' Stopping program in FUNC'
STOP

ENrDIF

c N is 3*NORGF

c XARRAY contains EPSPF,SIGPF,BDPFN and after we are
c done FVEC will contain the real parts of the ALPFN, the imag
c mnary parts of the ALPFN, the real parts of the BETHN, and
c the imaginary parts of the BETFN in the region surrounding
c the sphere

IF((NOP.GF.LT.O) .OR. (NORGF.GT.NLAYER)) THEN
WRITE(*,*)NORGF,' - NORGF in FUI[C.f'
WRITE(*s,*)' Stopping program in FUNC.f'
STOP

ENDIF
IF(IPRNDX.EQ. 1234) THEN
WR.ITE(*, 1233)

1233 FORMAT(4x,'I',7x,'BDPFN(I)',7x,'EPSPF(I)',7x,

1 'SIGPF(I)')
ENDIF

14 FKPF(NORGF+.i) - OMEGA/VELOCI
DO 30 I - 1,NORGF
IF(I.EQ.1) THEN

BDPFN(I) a XARRAY(I)*BDP(I)
ELSE

THICKF(I = THICK(I)*XARRAY(I)
BDPFII(I) - RDPFN(I-1)+THICKF(I)

END IF
IF(BDPF1J(I).LT.0,D0) rHEN
IFLAG - -1

ENDIF
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EPSPF(I) - XARPRAY(NORGF+I)*EPSP(I)
C

IF(EPSPF(I) .LT.EPSO) THEN
IFLAG - -1

END IF
SIGPFCI - XARRAY/(2*NORGF+I)*SIGP(I)

C

IV(SIGPF(I).LT.0.DO) THEN
IFLAG - -1

ENDIF
IF(IPRNDX.EQ. 1234) THEN
WRITE(*,1234)I,BDPFN(I) ,EPSPF(Ili,SIOPF(I)

1234 FORIIAT(I5,1PD15.7,2D15.7,' -n FUNC.f')
END IF

30 CONTINUE
IPRNDX - 11

c*******getting a new set of expansion coefficients
CALL PROPGF
CALL COEFAS

c KDB4 = M1/4 is passed through CSMCOM.f
c a~nd Mis a multiple of 4

IF((4*MDB4.NE.M).CPR.(NMINF.LT.t4DB4)) THEN
WRITE(*,*)' Error in SUBROUTINE FUNC'
WRITE(*,*)MDB4,' K DB4 which should be M1/4'
WRITE('*,*)M,' - M no FVEC values'
WMLTE(*,*)NMINF,' min no of Bessel functions'
WR.ITE(*,*)' Stoppintg program in FUNC'
STOP

EIDIF
DO 40 J - 1JMDB4
FVEC(J) - REAL(ALPFN(NORGF*NMINF+J))
FVECCI4DB4+J)-DIMAG(ALPFN(NORGF*NMINF.J))

C

FVEC(2*11DB4.j) - REAL(BETFN(NORGF*NNINF+J))
FVEC(3s1MWB4+J)mDIMAG(BETFN(NORGF'sNMINF.J))

40 CONTIN4UE
RETURN
END

24 Getting Letters and Numbers
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The next two routines permit us to get letters and numbers from the screen

SUBROUTINE GETLET(LCHOICLANS)

C *

c SUBROUTINE GETLET(LCHOIC,LANS) *

c *

c This subroutine gets the CHARACTR*1 variable LANS from the user *

c and makes certain that LANS is one of the two characters in the s

c CHARACTER*2 variable LCHOIC. The routine continues pestering the *
c user until one of the valid choices is input. *

C

IMPLICIT REAL*8 (A-H, O-Z)
CHARACTER LCHOIC*2, LANS*1, LINP*1, LI*1, L2*1
INTEGER*2 IC

5 READ(*,10) LINP
c 5 READ 10, LINP

10 FORMAT(A)
*

* CONVER T INPUT TO UPPER CASE
*

IF ( IAND(ICHAR(LINP),32) .GT. 0) THEN
IC-IEOR(ICHAR(LINP),32)
LANS-CHAR(IC)

ELSE
LANSwLINP

ENDIF

* CHECK INPUT FOR VALIDITY

LI=LCHOIC(i:1)
L2-LCHOIC(2:2)
IF ( (LANS.NE.L1) .AND. (LANS.NE.L2 ) THEN

WRITE(*,20) LANS,L1,L2
20 FORMAT(' ,,,*.. Your response of ',A,' was not valid *s**'/
1 ' Please choose either ',A,' or ',A/
2 Choice ? ')

GOTO 5
ENDIF
END
SUBROUTINE GETNUM(X)
IMPLICIT REAL*8 (A-H, O-Z)

5 READ(*,*,ERR-20) X
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RETURN
20 WRITE(*,30)
30 FORMAT(' **** You must enter a real number here *'R**'/

1 ' Please try again ? ')
GOTO 5
END

25 Minimization routine LMDIF

This minimization routine LMDIF is listed in the following.

SUBROUTINE LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCU,
* DIAG,MODF,FACTflR,NPRINT,INFONFEV,FJAC,LDFJAC,

* IPVTQTF,WAI,WA2,WA3,WA4)
IMPLICIT REAL*8 (A-H,O-Z)
INTEGER MN,MAXFEV,MODE,NPRINT, INFO,NFEV,LDFJAC
INTEGER IPVT(N)
REAL*8 MIN,MAX
REAL*8 FTOL,XTOL,GTOL, EPSFCN, FACTOR
REAL*8 X(N),FVEC(M),DIAG(N),FJAC(LDFJAC,N),QTF(N),WAI(u),WA2(N),

* WA3(N),WA4(M)
EXTERNAL FCN

C
C
C SUBROUTINE LMDIF
C
C THE PURPOSE OF LM'IF IS TO MINIMIZE THE SUM OF THE SQUARES OF
C M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF
C THE LEVENBERG-MARQUARDT ALGORITHM. THE USER MUST PROVIDE A
C SUBROUTINE WHICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS
C THEN CALCULATED BY A FORWARD-DTFFERENCE APPROXIMATION.
C

C Tli- SUBROUTINE STATEMENT IS
C
C SUBROUTINE LMDIF(FCN,M,N,X,FVEC,FTOLXTOL,GTOL,MAXFEV,EPSFCN ,
C DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,FJAC,
C LDFJACIPVT,QTF,WAI,WA2,WA3,WA4)
C
C WHERE
C
C FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
C CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
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C IN AN EXTERNAL STATEMENT IN THE USER CALLING
C PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
C
C SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
C INTEGER MNIFLAG
C REAL X(N),FVEC(M)

U •-

C CALCULATE ThE FUNCTIONS AT X AND
C RETURN THIS VECTOR IN FVEC.

10 C -

C RETURN
C END
C
C THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
C THE USER WANTS TO TERMINATE EXECUTION OF LMDIF.
C IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.
C
C M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF FUNCTIONS.
C
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF VARIABLES. N MUST NOT EXCEED M.
C
C X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
C AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
C CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.
C
C FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS
C THE FUNCTIONS EVALUATED AT THE OUTPUT X.
C
C FTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATIOIN
C OCCURS WHEN BOTH THE ACTUAL AND PREDICTED RELATIVE
C REDUCTIONS IN THE SUM OF SQUARES ARE AT MOST FTOL.
C THEREFORE, FTOL MEASURES THE RELATIVE ERROR DESIRED
C IN THE SUM OF SQUARES.
C
C XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
C OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE
C ITERATES IS AT MOST XTOL. THEREFORE, XTOL MEASURES THE
C RELATIVE ERROR DESIRED IN THE APPROXIMATE SOLUTION.
C
C GTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
C OCCURS WHEN THE COSINE OF THE ANGLE BETWEEN FVEC ANt)
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C ANY COLUMN OF THE JACOBIAN IS AT MOST GTOL IN ABSOLUTE
C VALUE. THEREFORE, GTOL MEASURES THE ORTHOGONALITY
C DESIRED BETWEEN THE FUNCTION VECTOR AND THE COLUMNS
C OF THE JACOBIAN.
C
C MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION
C OCCURS WHEN THE NUMBER OF CALLS TO FCN IS AT LEAST
C MAXFEV BY THE END OF AN ITERATION.
C
C EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE
C STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS
C APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE
C FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS
C THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE
C ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE
C PRECISION.
C
C DIAG IS AN ARRAY OF LENGTH N. IF MODE - 1 (SEE
C BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG
C MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS
C MULTIPLICATIVE SCALE FACTORS FOP. THE VARIABLES.
C
C MODE IS AN INTEGER INPUT VARIABLE. IF MODE - 1, THE
C VARIABLES WILL BE SCALED INTERNALLY. IF MODE - 2,
C THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER
C VALUES OF MODE ARE EQUIVALENT TO MODE - 1.
C
C FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE
C INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF
C FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE
C TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE
C INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE.
C
C NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED
C PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE,
C FCN IS CALLED WITH IFLAG - 0 AT THE BEGINNING OF THE FIRST
C ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND
C IMMEDIATELY PRIOR TO RETURN, WITH X AID FVEC AVAILABLE
C FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS
C OF FCN WITH IFLAG = 0 ARE MADE.
C
C INFO IS AN INTEGER OUTPUT VARIABLE. lF THE USER HAS
C TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
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C VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
C INFO IS SET AS FOLLOWS.
C
C INFO m 0 IMPROPER INPUT PARAMETERS.
C

* C INFO = I BOTH ACTUAL AND PREDICTED RELATIVE REDUCTIONS
C IN THE SUM OF SQUARES ARE AT MOST FTOL.
C
C INFO - 2 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES

SC IS AT MOST XTOL.
C
C INFO - 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD.
C
C INFO - 4 THE COSINE OF THE ANGLE BETWEEN FVEC AND ANY
C COLUMN OF THE JACOBIAN IS AT MOST GTOL IN
C ABSOLUTE VALUE.
C
C INFO - 5 NUMBER OF CALLS TO FCN HAS REACHED OR
C EXCEEDED MAXFEV.
C
C INFO a 6 FTOL IS TOO SMALL. NO FURTHER REDUCTION IN
C THE SUM OF SQUARES IS POSSIBLE.
C
C INFO - 7 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
C THE APPROXIMATE SOLUTION X IS POSSIBLE.
C
C INFO - 8 GTOL IS TOO SMALL. FVEC IS ORTHOGO';AL TO THE
C COLUMNS OF THE JACOBIAN TO MACHINE PRECISION.
C
C NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
C CALLS TO FCN.
C

A C FJAC IS AN OUTPUT M BY N ARRAY, THE UPPER N BY N SUBMATRIX
C OF FJAC CONTAINS AN UPPEI, TRIANGULAR MATRIX R WITH
C DIAGONAL ELEMENTS OF NONINCREASING MAGNITJDF SUCH THAT
C
C T T T

C P *(JAC *JAC)*P = R *R,
C
C WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL
C CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J)
C (SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRAPEZOIDAL
C PART OF FJAC CONTAINS INFORMATION GENERATED DURINC
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C THE COMPUTATION OF R.
C
C LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M

C WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

C
C IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT

C DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P m Q*R,
C WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS
C ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR

C WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE.
C COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

C
C QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
C THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*FVEC.
C
C WA1, WA2, AND WA3 ARE WORK ARRAYS OF LENGTH N.
C
C WA4 IS A WORK ARRAY OF LENGTH M.

C
C SUBPROGRAMS CALLED
C
C USER-SUPPLIED ...... FCN
C
C MINPACK-SUPPLIED ... SPMPAR,ENORM,FDJAC2,LMPAR,QRFAC

C
C FORTRAN-SUPPLIED ... ABS,AMAX1,AMIN1,SQRT,MOD
C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C

INTEGER I,IFLAG,ITER,J,L

REAL*8 ACTRED,DELTA,DIRDER,EPSMCH,FNORM,FNORM1 ,GNORM,ONE,PAR,
"* PNORM,PRERED,P1,P5,P25,P75,PO001,RATIO,SUM,TEMP,TEMP1,
* TEMP2,XNORM,ZERO

REAL*8 SPMPAR,ENORM
c DATA ONE,P1,P5,P25,P75,POOOI,ZERO
c * /I.OEO,I.OE-I,5.OE-1,2.SE-1,7.SE-I,I.OE-4,0.OEO/

DATA ONE,P1,PS,P25,P75,POOO1,ZERO
, /1.ODO,I.OD-1,5.OD-1,2.5D-1,7.5D-I,i.OD-4,0.ODO/

C
C EPSMCH IS THE MACHINE PRECISION.
C
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EPSMCH = SPMPARC1)
C

INFO = 0
IFLAG = 0

NFEV - 0
C
C CHECK THE INPUT PARAMETERS FOR ERRORS.
C

WRITE(*,*)' Checking input parameters in LMDIF'
IF (N .LE. 0 .OR. M .LT. N OR. LDFJAC .LT. M

* .OR. FTOL .LT. ZERO .OR. XTOL .LT. ZERO .OR. GTOL .LT. ZERO
* .OR. MAXFEV .LE. 0 .OR. FACTOR .LE. ZERO) GO TO 300

IF (MODE .NE. 2) GO TO 20
DO 10 J - 1, N

IF (DIAG(J) .LE. ZERO) GO TO 300
10 CONTINUE
20 CONTINUE

C
C EVALUATE THE FUNCTION AT THE STARTING POINT
C AND CALCULATE ITS NORM.
C

IFLAG = I
CALL FCN(M,N,X,FVECIFLAG)
NFEV w 1
IF (IFLAG .LT. 0) GO TO 300
FNORM - ENORIM(M,FVEC)

C
C INITIALIZE LEVENBERG-MARQUARDT PARAMETER AND ITERATION COUITER.

C
PAR * ZERO
ITER 1 1

C
* C BEGINNING OF THE OUTER LOOP.

C
30 CONTINUE

C

c******Changing FACTOR after a large number of calls

IF((ICHFAC.EQ.0).AND.(ICALLF.GT.IFMXFV)) THEN
FACTOR = I.DI*FACTOR
ICHFAC = 1

ENDIF
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C

c*****Determinining the largest value of FVEC*****
FVMAX - -1.D35

DO 31 IFV = 1,M
IF(FVEC(IFV) .GT.FVMAX) THEN

FVMAX - FVEC(IFV)
ENDIF

31 CONTINUE
c****-*******Changing FACTOR******************

IF((FVMAX.LT.i.D-9).AND.(ICHFAC.EQ.0)) THEN
FACTOR = 1.D1*FACTOR

ICHFAC - 1
WRITE(*,*)' We changed FACTOR when:
WRITE(*,*)FVMAX,' = FVMAX'
WRITE(*,*)' and',ICALLF,,' = ICALLF'
WRITE(*,*)' in subroutine LMDIF.f'

ENDIF
IF((FVMAX.LT.1.D-11).AND.(ICHFAC.EQ.1L)) THEN

FACTOR = .1DO

ICHFAC - 2
WRITE(*,*)' We changed FACTOR when'
WRITE(*,*)FVMAX,,' - FVMAX'
WRITE(*,*)' and',ICALLi,ý = ICALLF'
WRITE(*,*)' in subroutine LMDIF.f'

ENDIF
C CALCULATE THE JACOBIAN MATRIX.

C

IFLAG = 2
CALL FDJAC2(FCN,M,N,X,FVEC,FJAC,LDFJAC,IFLAG,EPSFCN,WA4)

NFEV - NFEV + N
IF (IFLAG .LT. 0) GO TO 300

C
C IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES.

C

IF (NPRINT .LE. 0) GO TO 40
IFLAG = 0
IF (MOD(ITER-1,NPRINT) .EQ. 0) CALL FCN(M,N,X,FVEC,IFLAG)

IF (IFLAG .LT. 0) GO TO 300
40 CONTINUE

C
C COMPUTE THE QR FACTORIZATION OF THE JACOBIAN.
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C
CALL QRFAC(M,N,FJAC,LDFJAC,.TRUE.,IPVTN,WAi,WA2,WA3)

C
C ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING
C TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.
C

IF (ITER .NE. 1) GO TO 80
IF (MODE .EQ. 2) GO TO 60
DO 50 J - 1, N

DIAG(J) = WA2(J)
IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE

50 CONTINUE
60 CONTINUE

C
C ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X
C AND INITIALIZE THE STEP BOUND DELTA.
C

DO 70 J - 1, N
WA3(J) = DIAG(J)*X(J)

70 CONTINUE
XNORM - ENORM(N,WA3)
DELTA - FACTOR*XNORM
IF (DELTA .EQ. ZERO) DELTA = FACTOR

80 CONTINUE
C
C FORM (Q TRANSPCSE)*FVEC AND STORE THE FIRST N COMPONENTS IN
C QTF.
C

DO 90 1 - I, M
WA4(I) = FVEC(I)

90 CONTINUE

DO 130 i - 1, N
IF (FJAC(J,J) .EQ. ZERO) GO TO 120
SUM - ZERO
DO 100 I - J, M

SUM - SUM + FJAC(I,J)*WA4(I)
"100 CONTINUE

TEMP = -SUM/FJAC(J,J)
DO 110 I = J, M

WA4(I) = WA4(1) + FJAC(I,J)*TEMP
10 CONTINUE
120 CONTINUE

FJAC(J,J) = WAI(J)
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QTF(J) = WA4(J)
130 CONTINUE

C
C COMPUTE THE NORM OF THE SCALED GRADIENT.
C

GNORM - ZERO
IF (FNORM .EQ. ZERO) GO TO 170
DO 160 J - 1, N

L - IPVT(J)
IF (WA2ML) .EQ. ZERO) GO TO 150
SUM z ZERO
DO 140 I = 1, J

SUM = SUM + FJAC(I,J)*(QTF(I)/FNORM)
140 CONTINUE

GNORM - AMAX1(GNORM,ABS(SUM/WA2(L)))
GNORM = DMAX1(GNORM,ABS(SUM/WA2(L)))

150 CONTINUE
160 CONTINUE
170 CONTINUE

C
C TEST FOR CONVERGENCE OF THE GRADIENT NORM.
C

IF (GNORM .LE. GTOL) INFO = 4
IF (INFO .NE. 0) GO TO 300

C
C RESCALE IF NECESSARY.
C

IF (MODE .EQ. 2) GO TO 190
DO 180 J = 1, N

DIAG(J) = AMAXI(DIAG(J),WA2(J))
DIAG(J) = DMAXI(DIAG(J),WA2(J))

180 CONTINUE
190 CONTINUE

C
C BEGINNING OF THE INNER LOOP.
C

200 CONTINUE
C
C DETERMINE THE LEVENBERG-MARQUARDT PARAMETER.
C

CALL LMPAR(N,FJAC,LDFJAC,IPVT,DIAG,QTF,DELTA,PAR,WA1I,WA2
* WA3,WA4)

C
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C STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P.
C

DO 210 J 1 1, N

WA1(J) -WAI(J)
WA2(J) = X(J) + WAI(J)

WA3(J) = DIAG(J)*WA1(J)
210 CONTINUE

PNORM = ENORM(NWA3)
C
C ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND.
C

c IF (ITER .EQ. 1) DELTA = AMINI(DELTA,PNORIM)
IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM)

C
C EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM.
C

IFLAG = 1
CALL FCN(M,N,WA2,WA4,IFLAG)
NFEV = NFEV + 1

IF (IFLAG .LT. 0) GO TO 300
FNORM1 = ENORM(M,WA4)

C
C COMPUTE THE SCALED ACTUAL REDUCTION.
C

ACTRED = -ONE
IF (PI*FNORM1 .LT. FNORM) ACTRED = ONE - (FNORMi/FNORM)**2

C
C COMPUTE THE SCALED PREDICTED REDUCTION AND
C THE SCALED DIRECTIONAL DERIVATIVE.
C

DO 230 J 1, N
WA3(J) = ZERO

L = IPVT(J)
TEMP = WAI(L)

DO 220 I 1 1, J
WA3(I) = WA3(I) + FJAC(I,J)*TEMP

220 CONTINUE
230 CONTINUE

TEMPI = ENORM(NWA3)/FNORM
TEMP2 = (SQRT(PAR)*PNORM)/FNORM
PRERED = TETPI.**2 + TEMP2**2/P5
DIRDER = -(TEMPI**2 + TEMP2**2)

C
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C COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED
C REDUCTION.
C

RATIO - ZERO
IF (PRERED .NE. ZERO) RATIO - ACTRED/PRERED

C
C UPDATE THE STEP BOUND.
C

IF (RATIO .GT. P25) GO TO 240
IF (ACTRED GE. ZERO) TEMP P5
IF (ACTRED .LT. ZERO)

TEMP = PS*DIRDER/(DIRDER + P5*ACTRED)
IF (PI*FNOR41 .GE. FNOPM .OR. TEMP .LT. P1) TEMP = PI

c DELTA - TEMP*AMIN1(DELTA,PNORM/Pi)
DELTA - TEMP*DMIN1(DELTA,PNORM/P1)
PAR - PAR/TER"
GO TO 260

240 CONTINUE
IF (PAR .NE. ZERO .AND. RATIO .LT. P75) GO TO 250
DELTA a PNOiM/PS
PAR - P5*PAR

250 CONTINUE
260 CONTINUE

C
C TEST FOR SUCCESSFUL ITERATION.
C

IF (RATIO .LT. P0001) GO TO 290
C
C SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.
C

DO 270 J - 1, N
X(J) - WA2(J)
WA2(J) - DIAG(J)*X(J)

270 CONTINUE
DO 280 1 = 1, M

FVEC(I) = WA4(I)
280 CONTINUE

XNORM a ENORM(N,WA2)
FNORM = FNORM1

ITER = ITER + 1
290 CONTINUE

C
C TESTS FOR CONVERGENCE.
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C
IF (ABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL
* .AND. P5*RATIO .LE. ONE) INFO = I

IF (DELTA .LE. XTOL*XNORM) INFO - 2

IF (ABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL
, .AND. P5,RATIO .LE. ONE .AND. INFO .EQ. 2) INFO = 3

IF (INFO .NE. 0) GO TO 300

C
C TESTS FOR TERMINATION AND STRINGENT TOLERANCES.

C
IF (NFEV .GE. MAXFEV) IIFO - 5
IF (ABS(ACTRED) .LE. EPSMCH .AND. PRERED .LE. EPSMCH
* .AND. P5*RATIO .LE. ONE) INFO = 6

IF (DELTA .LE. EPSMCH*XNORI) INFO - 7
IF (GNORM .LE. EPSMCH) INFO = 8
IF (INFO .NE. 0) GO TO 300

C

C END OF THE INNER LOOP. REPEAT IF ITERATION UNSUCCESSFUL.

C
IF (RATIO .LT. P0001) GO TO 200

C

C END OF THE OUTER LOOP.
C

GO TO 30
300 CONTINUE

C
C TERMINATION, EITHER NORMAL OR USER IMPOSED.

C

IF (IFLAG .LT. 0) INFO = IFLAG
IFLAG = 0
IF (NPRINT .GT. 0) CALL FCN(M,N,X,FVEC,IFLAG)
RETURN

C
C LAST CARD OF SUBROUTINE LMDIF.
C

"END

This is thfrl end of the gvneral LMDIF routine.

26 LMDIFF driver routine for LMDIF

Alfred M •rris wrote rho, fifllowing driver for the Leveixher-rg Mar('quardt lrf-rra e l'vvi-

ously listed. The external fiui'tion FCN is an arg•,tnnt mi, i this rountin, is to b,, minni izi .t.
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SUBROUTINE LMDIFF(FCN,M,NX,FVEC,EPSFCN,TOL,INFOIWA,WA,LWA,
I FACTOR)

IMPLICIT REAL*8(A-H,O-Z)
INTEGER M,N,INFO,LWA
INTEGER IWA(N)
REAL*8 EPSFCN,TOL
REAL*8 FACTOR,FTOL,GTOL,XTOL,ZERO
REAL*8 X(N),FVEC(M),WA(LWA)
EXTERNAL FCN

C
C
C SUBROUTINE LMDIFF
C
C THE PURPOSE OF LMDIFF IS TO MINIMIZE THE SUM OF THE SQUARES OF
C M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE
C LEVENBERG-MARQUARDT ALGORITHM. THIS IS DONE BY USING THE MORE
C GENERAL LEAST-SQUARES SOLVER LMDIF. THE USER MUST PROVIDE A
C SUBROUTINE WHICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS
C THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION.
C
C THE SUBROUTINE STATEMENT IS
C
C SUBROUTINE LMDIFF(FCN,M,N,X,FVEC,EPSFCN,TOL,INFO,IWA,WA,LWA)
C
C WHERE
C
C FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
C CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
C IN AN EXTERNAL STATEMENT IN THE USER CALLING
C PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
C
C SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
C INTEGER M,N,IFLAG
C REAL X(N),FVEC(M)
C --

C CALCULATE THE FUNCTIONS AT X AND
C RETURN THIS VECTOR IN FVEC.
C --

C RETURN
C END
C
C THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
C THE USER WANTS TO TERMINATE EXECUTION OF LMDIFF.
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C IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.
C
C M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF FUNCTIONS.
C
C N IS A POSITIVE INTEGER INPUT VARIAbLE SET TO THE NUMBER
C OF VARIABLES. N MUST NOT EXCEED M.
C
C X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
C AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
C CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.
C
C FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS
C THE FUNCTIONS EVALUATED AT THE OUTPUT X.
C
C EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE
C STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS
C APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE
C FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS
C THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE
C ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE
C PRECISION.

C
C TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS
C WHEN THE ALGORITHM ESTIMATES EITHER THAT TiE RELATIVE
C ERROR IN THE SUM OF SQUARES IS AT MOST TOL OR THAT
C THE RELATIVE ERROR BETWEEN X AND THE SOLUTION IS AT
C MOST TOL.
C
C INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
C TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
C VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
C INFO IS SET AS FOLLOWS.

* C
C INFO = 0 IMPROPER INPUT PARAMETERS.
C
C INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
"C IN THE SUM OF SQUARES IS AT MOST TOL.
C
C INFO = 2 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
C BETWEEN X AND THE SOLUTION IS AT MOST TOL.
C
C INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD.
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C
C INFO - 4 FVEC IS ORTHOGONAL TO THE COLUMNS OF THE
C JACOBIAN TO MACHINE PRECISION.
C
C INFO - 5 NUMBER OF CALLS TO FCN HAS REACHED OR
C EXCEEDED 200*(N+I).
C
C INFO - 6 TOL IS TOO SMALL. NO FURTHER REDUCTION IN
C THE SUM OF SQUARES IS POSSIBLZ.
C
C INFO u 7 TOL IS TOO SMALL. NO FURTHER IMPROVU-,F.NT IN
C THE APPROXIMATE SOLUTION X IS POSSIBLE.
C
C IWA IS AN INTEGER WORK ARRAY OF LENGTH N.

C
C WA IS A WORK ARRAY OF LENGTH LWA.

C

C LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN

C M*N+5*N+M.
C
C SUBPROGRAMS CALLED
C
C USER-SUPPLIED ...... FCN
C
C MINPACK-SUPPLIED ... LMDIF
C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

C
C

INTEGER MAXFEV,MODE,MP5N,NFEV,NPRINT

c REAL FACTOR,FTOL,GTOL,XTOL,ZERO
c DATA FACTORZERO /I.0E2,0.OEO/
c**************smaller factor being used*******

DATA ZERO/O.DO/

INFO = 0
WRITE(*,*)' We just entered LMDIFF with'
WRITE(*,*)TOL,' = TOL'
WRITE(*,*)EPSFCN,' = EPS'
WRITE(*,*)FACTOR,' = FACTOR'
WRITE(*,*)LWA,' - LWA'
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C
C CHECK THE INPUT PARAMETERS FOR ERRORS.
C

IF (N .LE. 0 .OR. M .LT. N .OR. EPSFCN .LT. ZERO
* .OR. TOL .LT. ZERO .OR. LWA .LT. M*N + 5*N 4 M) GO TO 10

C
C CALL LMDIF.
C
c**** MAXFEV - 200*(N + 1)***was used to determine the maximum
c********number of iterations allowed to find the minimum of FCN,
c******,*which is the user supplied function
c**** MAXFEV - 400*(N+i)

MAXFEV = 800*(N+I)
IFMXFV = 9*MAXFEV/10
ICHFAC = 0

c******Changes made to get more rapid convergence****.***

FTOL - TOL

XTOL - TOL
GTOL - ZERO
MODE = 1
NPRINT = C
MP5N - M + 5*0
WRITE(*,*)MAXFEV,' = MAXFEV in LMDIFF'
WRITE(*,*)IFMXFV,' - IFMXFV in LMDIFF'
WRITE(*,*)' IFMXFV causes FACTOR = 1O*FACTOR if'
WRITE(*,*)' in case ICALLF evceeds IFMXFV'
WRITE(*,*)' We are about to CALL LMDIF in LMDIFF.f'
CALL LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN,WA(1),

* MODE,FACTOR,NPRINT,INFO,NFEV,WA(MP5N+1),M,IWA,
* WA(N+I),WA(2*N+I),WA(3*N+1),WA(4*N+1),WA(5*N+1))
WRITE(*,*)' We finished CALL LMDIF in LMDIFF.f'
IF (INFO .EQ. 8) INFO = 4

10 CONTINUE
RETURN

C
C LAST CARD OF SUBROUTINE LMDIFF.
C

END
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27 Minimum value of an integer array

The following gives the minimurm value of an integer array.

FUNCTION MINN(NRAY, N)
* DETERMINE MINIMUM POSITIVE INTEGER VALUE IN ARRAY NRAY

DIMENSION NRAY(i0)
IF (N.EQ.1) GOTO 20
NMIN=NRAY(l)
DO 10 I-2,N

NTEMP=NRAY(I)
IF (NTEMP.LT.NMIN) NMIN=NTEMP

10 CONTINUE
MINN-NMIN
GOTO 30

20 MINN=NRAY(1)
30 RETURN

END

28 FUNCD - the function of sphere parameters

This is a vector valued function of sphere parameters that represeiur; the differoeire
between expansion coefficient values created by hypothesized spheres and the arrual ex-
pansion coefficients.

SUBROUTINE FUNCD(M, N, XARRAY,FVEC, IFLAG)
IMPLICIT REAL*8 (A-H,O-Z)
INCLUDE 'CSMCOM. f'
COMMON /FNCOM/IPRNDX

c NORGF is passed from COMMON CSMCOM.f by MAIN
c NMINF is passed from COMMON CSMCOM.f by COEF after
c computing the Pxpansion coefficients

DIMENSION XARRAY(N),FVEC(M)
ICALLF - ICALLF + 1
IF(N. NE.3*NORGF) THEN

WRITE(*,*)' Error in SUBROUTINE FUNCI
WRITZ(*,*)N,' a N'

WRITE(*,*)NORGF,' = NORGF'
WRITE(*,*)' Stopping program in FUNC'
STOP

ENDIF
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c N is 3*NORGF

c XARKAY contains EPSPFSIGPF,BDPFN

c for the core and THICKF(I) if I is an outer
c layer index and after we are
c done FVEC will contain the real parts of the ALPFN, the imag
c inary parts of the ALPFN, the real parts of the BETFN, and
c the imaginary parts of the BETFN in the region surrounding
c the sphere

IF((NORGF.LT.0).OR.(NORGF.GT.NLAYER)) THEN
WRITE(*,*)NORGF,' = NORGF in FUNC.f'
WRITE(*,*)' Stopping program in FUNC.f1
STOP

ENDIF
IF(IPRNDX.EQ.1234) THEN
WRITE(*,*)' Temporary print from FUNCD.f'
WRITE(*,*)FKP(NORG+1),' = FKP(NORG+I)'
WRITE(*,*)OMEGA/VELOCI,' = FKPF(NORGF+I)'
WRITE(*,1233)

1233 FORMAT(4x,'I',7x,'BDPFN(I)',7x,'EPSPF(I)',7x,
I 'SIGPF(I)')

ENDIF
FKPF(NORGF+l) = OMEGA/VELOCI
DO 30 I = 1,NORGF

IF(I.EQ.1) THEN
BDPFN(I) = BDP(I)*XARRAY(I)

ELSE
THICKF(I) - XARRAY(I)*THICK(I)
BDPFN(I) = BDPFN(I-I)+THICKF(I)

ENDIF
IF(THICK(I).LT.O.DO) THEN

IFLAG = -1

WRITE(*,*)' Negative thickness in FUNCD'
WRITE(*,*)I,THICKF(I),' = I, new layer thickness'
WRITE(*,*)' Stopping program in FUNCD.f'
STOP

ENDIF
IF(BDPFN(I).LT.O.DO) THEN

IFLAG = -1
WRITE(*,*)' Negative Radius in FUNCD'
WRITE(*,*)BDPFN(I),' - BDPFN(I)'
WRITE(*,*)' Stopping program in FUNCD'
STOP
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ENDIF
IF(ABS(XARRAY(I)).LT..9D0) THEN

C**w This is temporary
IFLAG a -1
WRITEC*,8876)XARRAY(I) ,I,BDPFN(I)

8876 FORMATUiPD15.7,' - XARRAY(',15,I) in FUNCD',
1 D15 .7,' - BDPFN(I)')
END IF
EPSPF(I) - ARRAY(NORGF+I)*EPSP(I)

C

IF(EPSPF(I) .LT.O.DO) THEN
IFLAG -- 1
WRITE(*,*)' Negative permittivity in FUNCD'
W'RITE(*,*)EPSPF(i),I EPSPF(I)'
WRITE(*,*)' Stopping program in FUNCD'
STOP

C

ENDIF
IF(ABS(XARJRAY(MORGF+I)) ,LT.O.9) THEM

IFLAG - -1

WRITE(*, SS?7)XARRAY(NORGF+I) ,NORGF+I, EPSPF(I)
8877 FORYIATUiPD15.7, a XARRAY(',I5,') in FUNOD',

1D15.7,' - EPSPF(I)')
END IF
srGPF(I) - XARILAY(2*NORGF+I)*SIGP(I')

c

IF(SIGPF(I) .!T.O.DO) TUEN
IFLAG = -1
WRITE(*,*)' Negative conductivity in FUNCD'
WRITE(*,*)SIGPF(I),l = SIPPF(I)'
WRITE(*,*)' Stopping program~ in FLJNGD'
STOP

C

ENDIF
IF(ABS(XAIURAY(2*NORGF+I)) .LTO. 9) THEN

IFLAG a-1

WRITE(*,8878)XARRJAY(2*NoaGF+I) ,2*NORGF+I,SIGPF(I)
8878 FORMAT(IPD15.7' = iARRAY(',I5,') in FUNCD',

1 DiS.7,' - SIGPF(I)')
ENDIlF
IF(IPRNDX.EQ.1234) THEN
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WRITE(*,1234)I,BDPFN(I) ,EPSPF(I) ,SIGPF(I)
1234 FOIU4AT(I5,1PD15.7,2D1S.7,' in FlJNCD')

END IF

30 CONTINUE

c****s***s***getting a new set of expansion coefficients

CALL PROPGF
CALL COEFAS

c The arrays ALPFN and BETFN analogous to ALPNP and BETNP
c are produced in COEFAS and passed through CSMCOM-f
c MDB4 =M/4 is passed through CSMCOM.f
c and Mis amultiple of 4

IF((4*MDB4.NE.M) .OR. (NMINF.LT.MDB4)) THEN
WRITE(*,*)' Error in SUBROUTINE FUNC'
wRITE(*,*)MDB4,' MDB4 which should be M/41
WRITE(*,*)M,' M =no MVC values'
WRITE(*,*)NIIINF,' min no of Bessel functions'
WRITE(*,*)' Stopping program in FUNO'
STOP

ENDIF
IF(IPRNDX.EQ. 1234) THEN

WRITE(* ,3455)
3455 FORLMAT(4x,'MDB4',4xc,'NMTIN,4x,'NcJRG',3x,'1flINF',

I 3x,'NORGF')
WRITE(*,3456)MDB4,NMIN,NORG,NMINF,NORGF
3456 F0PJMAT(518)

ENI)IF
DO 40 J - 1,MDB4
ABSVL - ABS(ALPNP(NORG*NMIN+J))

FVEC(J) = ( REAL(ALPFN(NORGF*NM.INF+J))
1 REAL(ALPNP (NORG*NMIN+i)) ) /ABSVL
FVEC (!DB4+j )= ( DIMAG (ALPFN (NORGF*NMINF+J)) -

1 DIMAG (ALPNP (NORG*NMIN+J)) ) /ABSVL
C

ABSVL =ABS(BETNP(NORG*NMIN+J))

FVEC(2*MDB4eJ) ( REAL(BETFN(NOPGF*NMINF+J))
1 REAL(BETNP(NORG*IJMIN+J)) )/ABSVL
FVEC(3*MDB4+J)=( DIMAG(BETFN(NORGF*NMINF+J))

1 DIMAG(BETNP(NORG*NMIN + 3)) )/ABSVL
40 CONTINUE

IPRNDX = 11

RETURN

END
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This is the end of the argtunent of our minimization routine.

29 Test Function FNT18 of the Minimization Routine

The function FNT18 is a paraboloid-like bowl in 19 dimensional space and the mini-mization routine finds the bottom of the bowl. This function has exactly the same formas FUNCD.

SUBROUTINE FNT18(M,N,XARRAY, FVEC, IFLAG)
IMPLICIT REAL*8(A-HO-Z)
INCLUDE -CSMCOM.f'
DIMENSION XARRAY(N),FVEC(M)
SUM = O.DO
ICALLF = ICALLF + 1
IF(ICALLF.EQ.I) THENdRITE(*,,), Printing initial XARRAY values from FNT18'

DO 2000 XX = I,NORGWRITE(*, 19 00)XARRAY(IX),XARRAY(NORG+IX),XARRAY(2*NORG+IX)
1900 FORMAT(IPD15.7,

2D1 5 . 7 )
2000 CONTINUE

ENDIF
IF(M.NE.20) THEN

WRITE(*,*)' Wrong M value in FNT18S
STOP

ENDIF
IFtN.NE.18) THEN

WRITE(*,*)N, = WRONG N value in FNTIo,
STOP

ENDIF
DO 20 J = I,N

IF(XARRAY(J).LT.O.DO) THEN
IFLAG - -1

ENDIF
IF(J.LE.N) THEN
FVEC(J) = ((XAPRAY(J)-FLOAT(J))/FLOAT(J))

ENDIF
C

SUM = SUM + FVEC(j)**2
20 CONTINUE

FVEC(19) = SUM
FVEC(20)=SUM÷((XARRAY(

2 )-FLOAT(2))/FLOAT(
2 ))** 2

RETURN
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END

This is the end of the test function listinig.

30 Miminzation subroutine LMPAR

This is a linear minimization routine that serves a role in the nonlin-ar fininflizatiof

problem. This was rewritten by Alfred Morris.

SUBROJTINE LMPAr(N, ,R,L[)R,IPVT,DIAG,QTB,DELTA,PAR,X,SDIAG,WA1,
* WA2)

INTEGER N,LDR
INTEGER IPVT(N)

REAL*8 DELTA,PAP.
REAL*8 R(LDR,N),DIAC(N) ,QTB(N),X(N),SDIAG(N),WAI(W) ,WA2(N)

C
C

C SUJ3ROUTINE LMPAR
C
C GIVEIU AN M BY N MATRIX A, ANl N BY N NONINGULAR DIAGONAL
C MATRIX D, AN M-VECTOR B, AND A POSITIVE NUMBER DELTA,
C THE PROBLEM IS TO DETERMINE A VALUE FOR THE PARAMETER
C PAR SUCH THAT ir X SOLVES THE SYSTEM
C
C A*X - B * ZQRT(PAR)*D*X = 0
c
C III THE LEASr SQUARES SE'NSE, AND DXNORM IS THE EUCLIDEAN
C NORM OF D*X, '."EN EITHER PAR IS ZERO AND
C
11 (DXNORM-DELTA) LE. O.I*DELTA
C
C OR PAR IS POSITIVE AND
C
C ABS(DXN0RM-0FLTA) LE. O.I*DEL'FA
C

C THiIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM

C IF IT IS PROVIDEDT' WITh THE NECESSARY INFORMATIOb FROM 71{E
C QR FA'7TORIZAT .* ;N, WITH COLUMN PIVOTING, OF A. THAT IS, IF

C A*P , QR, W!i:..RE P 1'; A PERMUTATION MATRIX, Q HAS ORTHO,'011AI.
C COLUMINS, AND R IS All UPPER TRIANGULAR MATRIX WITH DIAGwrmA!.
C ELEMENTS OF 01JOIICREASING MAGNITUDE, T}EN LMPAR EXPECTS
C THE FULL UPPER TRIANGI.E ('F I., THE ,fERMUTATIDII MATH IX P1,
C A N IE I 'I•. 11 C:') .'0':rI ('1OF (Q "IRAJS-POSLI,,I 0, OU'T'UT



C LMPAR ALSO PROVIDES AN UPPER TRIANGULAR MATRIX S SUCH THAT
C

C T T T
C P *(A *A + PARD*D)*P = S *S
C

C S IS EMPLOYED WITHIN LMPAR AND MAY BE OF SEPARATE INTEREST.
C
C ONLY A FEW ITERATIONS ARE GENERALLY NEEDED FOR CONVERGENCE
C OF THE ALGORITHM. IF, HOWEVER, THE LIMIT OF 10 ITERATIONS
C IS REACHED, THEN THE OUTPUT PAR WILL CONTAIN THE BEST

C VALUE OBTAINED SO FAR.
C
C THE SUBROUTINE STATEMENT IS

C
C SUBROUTINE LMPAR(N,R,LDRIPVT,DIAG,QTBDELTA,PAR,X,SDIAG,

C WA1,WA2)
C
C WHERE

C
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.
C
C R IS AN N BY N ARRAY. ON INPUT THE FULL UPPER TRIANGLE
C MUST CONTAIN THE FULL UPPER TRIANGLE OF THE MATRIX R.
C ON OUTPUT THE FULL UPPER TRIANGLE IS UNALTERED, AND THE
C STRICT LOWER TRIANGLE CONTAINS THE STRICT UPPER TRIANGLE
C (TRANSPOSED) OF THE UPPER TRIANGULAR MATRIX S.
C
C LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN 11
C WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.

C

C IPVT IS AN INTEGER INPUT ARRAY OF LENGTH N WHICF DEFINES THE
C PERMUTATION MATRIX P SUCH THAT A*P - Q*R. COLLMN J OF P
C IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

C
C DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE

C DIAGONAr, ELEMENTS OF THE MATRIX D.
C
C QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST
C N ELEMENTS OF THE VECTOR (Q TRANSPOSE),B.
C

C DELTA IS A POSITIVE INPUT VARIABLE WHICH SPECIFIES All UPPER
C BOUNlD ON THE EUCLIDEAN NORM OF D*X.
C
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C PAR IS A NONNEGATIVE VARIABLE. ON INPUT PAR CONTAINS AN

C INITIAL ESTIMATE OF THE LEVENBERG-MARQUARDT PARAMETER.

C ON OUTPUT PAR CONTAINS THE FINAL ESTIMATE.

C
C X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE LEAST

C SQUARES SOLUTION OF THE SYSTEM A*X = B, SQRT(PAR)*D*X 0,

C FOR THE OUTPUT PAR.

C

C SDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE

C DIAGONAL ELEMENTS OF THE UPPER TRIANGULAR MATRIX S.

C
C WAI AND WA2 ARE WORK ARRAYS OF LENGTH N.

C

C SUBPROGRAMS CALLED
C

C MINPACK-SUPPLIED ... SPMPAR,ENORM,QRSOLV

C
C FORTRAN-SUPPLIED ... ABS,AMAXI,AMINI ,SQRT
C
C ARGONNE NATIONAL LABORATORY, MINPACK PROJECT. MARCH 1980.

C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

C
C

INTEGER I,ITER,J,JM1,JP1,K,L,NSING

REAL*8 DXNORM,DWARF,FP,GNORM,PARC,PARL,PARU,P1 ,PO01, SU1M,TEMP,ZERO

REAL*8 DPMPAR, SPMPAR,ENORM
DATA P1,P001,ZERO /1.OE-!,i.OE-3,0.OEO/

C

C DWARF IS THE SMALLEST POSITIVE MAGNITUDE.

C

DWARF - SPMPAR(2)
DWARF = DPMPAR(2)

C

C COMPUTE AND STORE IN X THE GAUSS-NEWTON DIRECTION. IF THE

C JACOBIAN IS RANfK-DZFICIENT, OBTAIN A LEAST SQUARES SOLUTION.

C

NSING - N
DO 10 J = 1, N

WAI(J) = QTB(J)

IF (R(J,J) .EQ. ZERO .All. NSING EQ. N) NSING J- I

IF (14SING .LT. N) WAI(J) = ZERO
10 CONTINUE

IF (IUSING ,LT. 1) GO TO 50
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DO 40 K = I, NSING

J a NSING - K + 1
WAI(J) = WA1(J)/R(J,J)
TEMP - WA1(J)
JM1 =J - I
IF (JM1 .LT. 1) GO TO 30
DO 20 1 -1, JMI

WAI(I) - WA1(I) - R(I,J)*TEMP

20 CONTINUE

30 CONTINUE
40 CONTINUE
40 CONTINUE

DO 60 J - 1, N

L = IPVT(J)
X(L) - WAI(J)

60 CONTINUE
C
C INITIALIZE THE ITERATION COUNTER.

C EVALUATE THE FUNCTION AT THE ORIGIN, AND TEST
C FOR ACCEPTANCE OF THE GAUSS-NEWTON DIRECTION.

C
ITER - 0

DO 70 J v 1, N
WA2(J) = DIAG(J),X(J)

70 CONTINUE

DXNORM - ENORM(N,WA2)
FP - DXNORM - DELTA
IF (FP .LE. PI*DELTA) GO TO 220

C
C IF THE JACOBIAN IS NOT RANK DEFICIENT, THE NEWTON
C STEP PROVIDES A LOWER BOUND, PARL, FOR THE ZERO OF

C THE FUNCTION. OTHERWISE SET THIS BOUND TO ZERO.
C

PARL = ZERO
IF (NSING .LT. N) GO TO 120
DO 80 J x 1, N

L IPVT(J)
WAI(J) - DIAG(L)*(WA2(L,)/DXNORM)

80 CONTINUE

DO 110 J = 1, N
SUM - ZERO

JM1 a J - 1

IF (JMI LLT. 1) GO TO 100
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DO 90 I = 1, JMI
SUM = SUM + R(I,J)*WAI(I)

90 CONTINUE

100 CONTINUE
WAIJ) (WA1W) - SUM)/R(J,J)
i10 CONTINUE

4 TEMP = ENORM(N,WAI)
PARL a ((FP/DELTA)/TEMP)/TEMP

120 CONTINUE
C

4 C CALCULATE AN UPPER BOUND, PARU, FOR THE ZERO OF THE FUNCTION.

C
DO 140 J = 1, N

SUM = ZERO

DO 130 I = 1, J
SUM a SUM + R(I,J)*QTB(I)

130 CONTINUE
L = IPVT(J)
WA1(J) = SUN/DIAG(L)
140 CONTINUE

GNORMI ENORM(N,WA1)
PARU = GNORM/DELTA
IF (PARU .EQ. ZERO) PARU = DWARF/AMIN1(DELTA,Pl)
IF (PARU -EQ. ZERO) PARU = DWARF/DMIN1%(DELTA,P1)

C
C IF THE INPUT PAR LIES OUTSIDE OF THE INTERVAL (PARL,PARU),
C SET PAR TO IHE CLOSER ENDPOINT.
C
c PAR = AMAX1(PAR,PARL)
c PAR = AMINI1(PAR,PARU)

PAR = DMAX1(PAR,PARL)
PAR = DMIN1(PAR,PARU)

IF (PAR .EQ. ZERO) PAR - GNORM/DXNORM
C
C BEGINNING OF AN ITERATION.
C

150 CONTINUE

ITER - ITER + 1
C

C EVALUATE THE FUNCTION AT THE CURRENT VALUE OF PAR.
c

c IF (PAR EQ ZERO) PAR = AMAXI(DWARF,POO1*PARU)
IF (PAR .EQ. ZERO) PAR = MAX(DWARF,POOI*PARU)
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TEMP - SQRT(PAR)

DO 160 J 1 1, N
WAI(J) = TEMP*DIAG(J)

160 CONTINUE
CALL QRSOLV(N,R,LDR,IPVT,WA1,QTB,X,SDIAG,WA2)
DO 170 J = 1, N

WA2(J) DIAG(J)*X(J)
170 CONTINUE
DXNORM - ENORM(N,WA2)
TEMP - FP
FP - DXNORM - DELTA

C
C IF THE FUNCTION IS SMALL ENOUGH, ACCEPT THE CURRENT VALUE

C OF PAR. ALSO TEST FOR THE EXCEPTIONAL CASES WHERE PARL
C IS ZERO OR THE NUMBER OF ITERATIONS HAS REACHED 10.
C

IF (ABS(FP) .LE. PlDELTA
* .OR. PARL .EQ. ZERO .AND. FP .LE. TEMP

* .AND. TEMP .LT. ZERO .OR. ITER .EQ. 10) GO TO 220
C
C COMPUTE THE NEWTON CORRECTION.
C

DO 180 J = 1, N
L = IPVT(J)

WAI(J) - DIAG(L)*(WA2(L)/DXNORM)
180 CONTINUE

DO 210 J = 1, N
WA1(J) = WAI(J)/SDIAG(J)
TEMP WAI(J)

JP1 =J 1

IF (N .LT. JPI) GO TO 200
DO 190 I JPI, N

WAl(I) = WAI() - R(I,J)*TEMP
190 CONTINUE

200 CONTINUE
210 CONTINUE

TEMP - ENORM(N,WAI) 1
PARC - ((FP/DELTA)/TEMP)/TEMP

C

C DEPENDING ON THE SIGN OF THE FUNCTION, UPDATE PARL OR PARU.
C

c IF (UP .GT. ZERO) PARL - AMAXI(PARL,PAR)

c TF (UP .LT. ZERO) PARU = AMIN1(PARU,PAR)
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IF (FP .GT. ZERO) PARL - DMAXI(PARL 'AR)
IF (FP .LT. ZERO) PARU = DMIN1(PARU,PAR)

C

C COMPUTE AN IMPROVED ESTIMATE FOR PAR.
C

c PAR = AMAXI(PARL,PAR+PARC)
4 PAR = MAX (PARL,PAR+PARC)

C
C END OF AN ITERATION.
C

GO TO 150
220 CONTINUE

C
C TERMINATION.

C
IF (ITER .EQ. 0) PAR - ZERO
RETURN

C
C LAST CARD OF SUBROUTINE LMPAR.
C

END

This is the end of LMPAR.

31 QRFAC - matrix factorization routine

The SUBROUTINE QRFAC computc-s a QR factorization of the input NI by N nmarrix
A.

SUBROUTINE QRFAC(MN,ALDA,PIVOT,IPVT,LIPVT,RDIAG.,ACNORM,WA)

INTEGER M,N,LDA,LIPVT

INTEGER IPVT(LIPVT)

LOGICAL PIVOT
REAL*8 A(LDA,N) ,RDIAG(N) ,ACNORM(N) ,WA(N)

C
C

& C SUBROUTINE QRFAC
C
C THIS SUBROUTINE USES HOUSEHOLDER TRANSFORMATIONS WITH COLUMN
C PIVOTING (OPTIONAL) TO COMPUTE A QR FACTORIZATION OF THE
C M BY N MATRIX A. THAT IS, QRFAC DETERMINES AN ORTHOGONAL
C MATRIX Q, A PERMUTATION MATRIX P, AND AN UPPER TRAPEZOIDAL
C MATRIX R WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE,
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C SUCH THAT A*P = Q*R. THE HOUSEHOLDER TRANSFORMATION FOR
C COLUMN K, K = 1,2,...,MIN(M,N), IS OF THE FORM
C
C T
C I - (1/U(K))*U*U

C
C WHERE U HAS ZEROS IN THE FIRST K-1 POSITIONS. THE FORM OF
C THIS TRANSFORMATION AND THE METHOD OF PIVOTING FIRST
C APPEARED IN THE CORRESPONDING LINPACK SUBROUTINE.
C

C THE SUBROUTINE STATEMENT IS
C
C SUBROUTINE QRFAC(M,N,A,LDA,PIVOT,IPVT,LIPVT,RDIAG ,ACNORM,WA)
C
C WHERE
C
C M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF ROWS OF A.
C
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF COLUMNS OF A.
C
C A IS AN M BY N ARRAY. ON INPUT A CONTAINS THE MATRIX FOR
C WHICH THE QR FACTORIZATION IS TO BE COMPUTED. ON OUTPUT
C THE STRICT UPPER TRAPEZOIDAL PART OF A CONTAINS THE STRICT
C UPPER TRAPEZOIDAL PART OF R, AND THE LOWER TRAPEZOIDAL
C PART OF A CONTAINS A FACTORED FORM OF Q (THE NON-TRIVIAL
C ELEMENTS OF THE U VECTORS DESCRIBED ABOVE).
C
C LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAIN M
C WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A.
C
C PIVOT IS A LOGICAL INPUT VARIABLE. IF PIVOT IS SET TRUE,
C THEN COLUMN PIVOTING IS ENFORCED. IF PIVOT IS SET FALSE,
C THEN NO COLUMN PIVOTING IS DONE.
C
C IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH LIPVT. IPVT
C DEFINES THE PERMUTATION MATRIX P SUCH THAT A*P = Q*R.
C COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.
C IF PIVOT IS FALSE, IPVT IS NOT REFERENCED.
C
C LIPVT IS A POSITIVE INTEGER INPUT VARIABLE. IF PIVOT IS FALSE,
C THEN LIPVT MAY BE AS SMALL AS 1. IF PIVOT IS TRUE, THEN
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C LIPVT MUST BE AT LEAST N.
C
C RDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE
C DIAGONAL ELEMENTS OF R.
C
C ACNORM IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE
C NORMS OF THE CORRESPONDING COLUMNS OF THE INPUT MATRIX A.
C IF THIS INFORMATION IS NOT NEEDED, THEN ACNORM CAN COINCIDE
C WITH RDIAG.

C
C WA IS A WORK ARRAY OF LENGTH N. IF PIVOT IS FALSE, THEN WA
C CAN COINCIDE WITH RDIAG.
C

C SUBPROGRAMS CALLED
C
C MINPACK-SUPPLIED ... SPMPAR,ENORM

C
C FORTRAN-SUPPLIED ... AMAXI,SQRT,MINO

C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C

INTEGER I,J,JP1,K,KMAX,MINMN
c REAL AJNORM,EPSMCH,ONE,POS,SIU,TEMP,ZERO
c REAL SPMPAR,ENORM

REAL*8 AJNORM,EPSMCH,ONE,PO5,SUM,TEMP,ZERO
REAL*8 SPMPAR,DPMPAR,ENORM
DATA ONE,P05,ZERO /1.OEO,5.OE-2,0.OEO/

C
C EPSMCH IS THE MACHINE PRECISION.

C

EPSMCH = SPMPAR(1)
EPSMCH = DPMPAR(1)

C
C COMPUTE THE INITIAL COLUMN NORMS AND INITIALIZE SEVERAL ARRAYS.
C

DO 10 J = 1, N

ACNORM(J) = ENORM(M,A(1,J))
RDIAG(J) = ACNORM(J)
WAJ) = RDIAG(J)

IF (PIVOT) IPVT(J) = J
10 CONTINUE
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C
C REDUCE A TO R WITH HOUSEHOLDER TRANSFORMATIONS.
C

MINMN = MINO(M,N)

DO 110 J - 1, MINMN
IF (.NOT.PIVOT) GO TO 40

C BRING THE COLUMN OF LARGEST NORM INTO THE PIVOT POSITION.
C

KMAX - J

DO 20 K - J, N
IF (RDIAG(K) .GT. RDIAG(KMAX)) KMAX = K

20 CONTINUE
IF (KMAX .EQ. J) GO TO 40
DO 30 I - 1, M

TEMP - A(I,J)
A(I,J) - A(I,KMAX)
A(I,KMAX) - TEMP

30 CONTINUE
RDIAG(KZMAX) - RDIAG(J)
WA(KMAX) a WA(J)
K - IPVT(J)
IPVT(J) - IPVT(KMAX)
IPVT(KMAX) = K

40 CONTINUE
C
C COMPUTE THE HOUSEHOLDER TRANSFORMATION TO REDUCE THE
C J-TH COLUMN OF A TO A MULTIPLE OF THE J-TH UNIT VECTOR.
C

AJNORM - ENOPM (M-J+I,A(J,J))
IF (AJNORM .EQ. ZERO) GO TO 100
IF (A(J,J) .LT. ZERO) AJNORM a -AJNORM
DO 50 1 - J, M

A(IJ) - A(I,J)/AJNORM
50 CONTINUE

A(J,J) - A(J,J) + ONE

C
C APPLY THE TRANSFORMATION TO THE REMAINING COLUMNS
C AND UPDATE THE NORMS.
C

JPI a j + 1

IF (N .LT. JP1) GO TO 100
DO 90 K v JP1, N
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SUM = ZERO

DO 60 I = J, M

SUM = SUM + A(I,J)*A(I,K)
60 CONTINUE

TEMP = SUM/A(J,J)
DO 70 I = J, M

A(I,K) = A(I,K) - TEMP*A(I,J)
70 CONTINUE

IF (.NOT.PIVOT .OR. RDIAG(K) .EQ. ZERO) GO TO 80
TEMP = A(J,K)/RDIAG(K)

c RDIAG(K) = RDIAG(K)*SQRT(AMAXI(ZERO,ONE-TEMP**2))
RDIAG(K) = RDIAG(K)*SQRT(DMAX1(ZERO,ONE-TEMP*,2))

IF (P05*(RDIAG(K)/WA(K))**2 .GT. EPSMCH) GO TO 80
RDIAG(K) = ENORM(M-J,A(JPi,K))
WA(K) = RDIAG(K)

80 CONTINUE
90 CONTINUE

100 CONTINUE
RDIAG(J) = -AJNORM

110 CONTINUE
RETURN

C
C LAST CARD OF SUBROUTINE QRFAC.
C

END

32 QRSOLV - simultaneous solution of linear equa-
tions

This routine simultaneously solves two linear equatiofs.

SUBROUTINE ORSOLV(N,R,LDR,IPVT,DIAG,QTB,X,SDIAG,WA)

INTEGER N,LDR
INTEGER IPVT(N)
REAL*8 R(LDR,N),DIAG(N),QTB(N),X(N),SDIAG(N),WA(N)

C
c

C SUBROUTINE QRSOLV
C
C GIVEN AN M BY N MATRIX A, AN N BY N DIAGONAL MATRIX D,
C AND AN M-VECTOR B, THE PROBLEM IS TO DETERMINE AN X 'WHICH
C SOLVES THE SYSTEM
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C
C A*X=B , D*X = 0
C
C IN THE LEAST SQUARES SENSE.
C
C THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM
C IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE
C QR FACTORIZATION, WITH COLUMN PIVOTING, OF A. THAT IS, IF

C A*P m Q*R, WHERE P IS A PERMUTATION MATRIX, Q HAS ORTHOGONAL
C COLUMNS, AND R IS AN UPPER TRIANGULAR MATRIX WITH DIAGONAL

C ELEMENTS OF NONINCREASING MAGNITUDE, THEN QRSOLV EXPECTS
C THE FULL UPPER TRIANGLE OF R, THE PERMUTATION MATRIX P,

C AND THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. THE SYSTEM

C A*X - B, D*X = 0, IS THEN EQUIVALENT TO
C
C T T
C R*Z = Q *B , P *D*PZ = 0
C
C WHERE X = P*Z. IF THIS SYSTEM DOES NOT HAVE FULL RANK,

C THEN A LEAST SQUARES SOLUTION IS OBTAINED. ON OUTPUT QRSOLV

C ALSO PROVIDES AN UPPER TRIANGULAR MATRIX S SUCH THAT

C
C T T T
C P *(A *A + D*D)*P = S ,S
C
C S IS COMPUTED WITHIN QRSOLV AND MAY BE OF SEPARATE INTEREST.
c
C THE SUBROUTINE STATEMENT IS

C
C SUBROUTINE QRSOLV (N, R, LDR, IPVT, DIAG, QTB, X, SDIAG,WA)
c
C WHERE
C
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.
C
C R IS AN N BY N ARRAY. ON INPUT THE FULL UPPER TRIANGLE
C MUST CONTAIN THE FULL UPPER TRIANGLE OF THE MATRIX R.
C ON OUTPUT THE FULL UPPER TRIANGLE IS UNALTERED, AND THE
C STRICT LOWER TRIANGLE CONTAINS THE STRICT UPPER TRIANGLE

C (TRANSPOSED) OF THE UPPER TRIANGULAR MATRIX S.
C
C LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
C WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.
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C
C IPVT IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH DEFINES THE
C PERMUTATION MATRIX P SUCH THAT A*P - Q*R. COLUMN J OF P
C IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.
C
C DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE
C DIAGONAL ELEMENTS OF THE MATRIX D.
C
C QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST
C N ELEMENTS OF THE VECTOR (Q TRANSPOSE),B.
C
C X IS AN OUTPLUT ARRAY OF LENGTH N WHICH CONTAINS THE LEAST
C SQUARES SOLUTION OF THE SYSTEM A*X = B, D*X = 0.
C
C SDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE
C DIAGONAL ELEMENTS OF THE UPPER TRIANGULAR MATRIX S.
C
C WA IS A WORK ARRAY OF LENGTH N.

C
C SUBPROGRAMS CALLED

C
C FORTRAN-SUPPLIED ... ABS,SQRT
C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

C

C

INTEGER I,J,JPI,K,KPI,L,NSING
REAL COS,COTAN,P5,P25,QTEPJ,SINSUM,TAN,TEMP,ZERO
DATA PS,P25,ZER0 /5.OE-12.5E-1,O.OEO/

C

C COPY R AND (Q TRANSPOSE)-B TO PRESERVE INPUT AND INITIALIZE S.

C IN PARTICULAR, SAVE THE DIAGONAL ELEMENTS OF R IN X.
C

DO 20 J = 1, N
DO 10 1 = J, N

R(IJ) = R(J,I)

10 CONTINUE

X(J) R(JJ)
WA(J) QTB(J)

20 CONTINUE
C
C ELIMINATE THE DIAGONAL MATRIX D USING A GIVENS ROTATION.
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C

DO 100 J = 1, N
C
C PREPARE THE ROW OF D TO BE ELIMINATED, LOCATING THE
C DIAGONAL ELEMENT USING P FROM THE QR FACTORIZATION.
C

L - IPVT(J)
IF (DIAG(L) .EQ. ZERO) GO TO 90
DO 30 K - J, N

SDIAG(K) = ZERO
30 CONTINUE

SDIAG(J) = TIAG(L)
C
C THE TRANSFORMATIONS TO ELIMINATE THE ROW OF D
C MODIFY ONLY A SINGLE ELEMENT OF (Q TRANSPOSE)*B
C BEYOND THE FIRST N, WHICH IS INITIALLY ZERO.
C

QTBPJ = ZERO

DO 80 K = J, N
C
C DETERMINE A GIVENS ROTATIN WHICH ELIMINATES THE
C APPROPRIATE ELEMENT VN THE CURRENT ROW OF D.
C

IF (SDIAG(K) .EQ. ZERO) GO TO 70
IF (ABS(R(K,K)) .GE. ABS(SDIAG(K))) GO TO 40

COTAN = R(K,K)/SDIAG(K)

SIN = P5/SQRT(P25+P25*COTAN**2)

COS = SIN*COTAN

GO TO 50
40 CONTINUE

TAN = SDIAG(K)/R(K,K)
COS = P5/SQRT(P25+P25*TAN**2)
SIN = COS*TAN

50 CONTINUE
C
C COMPUTE THE MODIFIED DIAGONAL ELEMEN;T OF K MID
C THE MODIFIED ELEMENT OF ((Q TRANSPOSE)*B,O).
C

R(K,K) = COS*R(K,K) + SIN*SDIAG(K)

TEMP = COS*WA(K) + SIN*QTBPJ
QTBPJ -SIN*WA(K) + COS*QTBPJ
WA(K) = TEMP

C
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C ACCUMULATE THE TRANFORMATION IN THE ROW OF S.
C

KPI = K + 1
IF (N .LT. KPI) GO TO 70

DO 60 I = KP1, N
TEMP = COS*R(I,K) + SIN*SDIAG(I)
SDIAG(I) = -SIN*R(I,K) + COS*SDIAG(I)

R(I,K) = TEMP
60 CONTINUE

70 CONTINUE

80 CONTINUE
90 CONTINUE

C
C STORE THE DIAGONAL ELEMENT OF S AND RESTORE
C THE CORRESPONDING DIAGONAL ELEMENT OF R.
C

SDIAG(J) = R(J,J)
R(3,J) = X(J)

100 CONTINUE
C
C SOLVE THE TRIANGULAR SYSTEM FOR Z. IF THE SYSTEM IS
C SINGULAR, THEN OBTAIN A LEAST SQUARES SOLUTION.
C

NSING = N

DO 110 J = 1, N
IF (SDIAG(J) .EQ. ZERO .AND. NSING .EQ. N) NSING = J - 1
IF (MSING .LT. N) WA(J) = ZERO
110 CONTINUE

IF (NSING .LT. 1) GO TO 150
DO 140 K = 1, NSING

J = NSING - K + 1
SUM = ZERO

JP1 = j + 1
IF (MSING .LT. JPI) GO TO 130
DO 120 I = JPI, NSING

SUM = SUM + R(I,J)*WA(I)

120 CONTINUE
130 CONTINUE
WA(J) = (WA(J) - SUM)/SDIAG(J)

140 CONTINUE
150 CONTINUE

C
C PERMUTE THE COMPONENTS OF Z BACK TO COMPONENTS OF X.
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C
DO 160 J = 1, N

L = IPVT(J)
X(L) - WA(J)
160 CONTINUE

RETURN
C
C LAST CARD OF SUBROUTINE QRSOLV.
C

END

This is the end of the QRSOLV part of the inversion program. This was rewrirro1l by
Alfred Morris.

33 Machine constants in single precision

The function SPMPAR gives machine constants in single precision. Tis was rewritten
by Alfred Morris.

FUNCTION SPMPAR(I)
c REAL FUNCTION SPMPAR(I)

REAL*8 SPMPAR
INTEGER I

C
C
C SPMPAR PROVIDES THE SINGLE PRECISION MACHINE PARAMETERS FOR
C THE COMPUTER BEING USED. IT IS ASSUMED THAT THE ARGUMENT
C I IS AN INTEGER HAVING ONE OF THE VALUES 1, 2, OR 3. IF THE
C SINGLE PRECISION ARITHMETIC BEING USED HAS T BASE B DIGITS AND
C ITS SMALLEST AND LARGEST EXPONENTS ARE EMIN AND EMAX, THEN
C
C SPMPAR(1) = B**(l - T), THE MACHINE PRECISION,
C
C SPMPAR(2) a B**(EMIN - 1), THE SMALLEST MAGNITUDE,
C
C SPMPAR(3) = B**EMAX*(i - B*,(-T)), THE LARGEST MAGNITUDE.
C
C TO DEFINE THIS FUNCTION FOR THE COMPUTER BEING USED, ACTIVATE
C THE DATA STATMENTS FOR THE COMPUTER BY REMOVING THE C FROM
C COLUMN 1. (ALL OTHER DATA STATEMENTS IN SPMPAR SHOULD HAVE C
C IN COLUMN 1.) IF DATA STATEMENTS ARE NOT GIVEN FOR THE COMPUTER
C BEING USED, THEN THE SUBROUTINE MACH MAY BE USED TO COMPUTE THE
C VALUES FOR SPMPAR.
C
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C
C

C SPMPAR IS AN ADAPTATION OF THE FUNCTION RIMACH, WRITTEN BY P.A.
C FOX, A.D. HALL, AND N.L. SCHRYER (BELL LABORATORIES). SPMPAF
C WAS DESIGNED BY B.S. GARBOW, K.E. HILLSTROM, AND J.J. MORE
C (ARGONNE NATIONAL LABORATORY). THE MAJORITY OF PARAMETER VALUES
C ARE FROM BELL LABORATORIES.
C
C

INTEGER MCHEPS(2)
INTEGER MINMAG(2)
INTEGER MAXMAG(2)

REAL RMACH(3)
EQUIVALENCE (RMACH(1),MCHEPS(1))
EQUIVALENCE (RMACH(2),MINMAG(1))

EQUIVALENCE (RMACH(3),MAXMAG(1))
C
C MACHINE CONSTANTS FOR THE BURROUGHS 1700 SYSTEM.
C
C DATA RMACH(1) / Z4EA800000 /
C DATA RMACH(2) / Z400800000 /
C DATA RMACH(3) / Z5FFFFFFFF /
C
C MACHINE CONSTANTS FOR THE BURROUGHS 5700/6700/7700 SYSTEMS.
C
C DATA RMACH(1) / 01301000000000000 /
C DATA RMACH(2) / 01771000000000000 /
C DATA RMACH(3) / 00777777777777777 /

C
C MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES.
C (OCTAL FORMAT FOR FORTRAN 4 COMPILERS)
C
C DATA RMACH(1) / 16414000000000000000B /
C DATA RMACH(2) / 00014000000000000000B /
C DATA RMACH(3) / 37767777777777777777B /
C
C MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES.
C (INTEGER FORMAT FOR FORTRAN 4 AND 5 COMPILERS)

C

DATA MCHEPS(1) / 261630j90852554752 /
DATA MINMAG(1) / 422212465065984 /
DATA MAXMAG(1) / 576179277326712831 /

C
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C MACHINE CONSTANTS FOR THE CRAY-1.
C
C DATA RMACH(1) / 0377224000000000000000B /
C DATA RMACH(2) / 0200034000000000000000B /
C DATA RMACH(3) / 0577777777777777777776B /
C
C MACHINE CONSTANTS FOR THE DATA GENERAL ECLIPSE S/200.
C
C NOTE - IT MAY BE APPROPRIATE TO INCLUDE THE FOLLOWING CARD -

C STATIC RMACH(3)
C
C DATA MINMAG/20KO/,MAXMAG/77777K,177777K/
C DATA MCHEPS/36020K,O/
C
C MACHINE CONSTANTS FOR THE HARRIS 220.
C
C DATA MCHEPS(1) / '20000000, '00000353 /
C DATA MINMAG(l) / '20000000, '00000201 /
C DATA MAXMAG(1) / 137777777, '00000177 /
C
C MACHINE CONSTANTS FOR THE HONEYWELL 600/6000 SERIES.
C
C DATA RMACH(1) / 0716400000000 /
C DATA RMACH(2) / 0402400000000 /
C DATA RMACH(3) / 0376777777777 /
C
C MACHINE CONSTANTS FOR THE HP 2100
C
C DATA MCHEPS(1), MCHEPS(2) / 40000B, 327B /
C DATA MINMAG(l), MINMAG(2) / 40000B, 1I
C DATA MAXMAG(1), MAXMAG(2) / 77777B, 177776B /
C
C MACHINE CONSTANTS FOR THE HP 9000
C
C DATA RMACH(1) / .1192093E-06 /
C DATA RMACH(2) / .5877472E-38 /
C DATA RMACH(3) / .3402823E+39 /
C
C MACHINE CONSTANTS FOR THE IBM 360/370 SERIES,
C THE AMDAHL 470/V6, THE ICL 2900, THE ITEL AS/6,
C THE XEROX SIGMA 5/7/9 AND THE SEL SYSTEMS 85/86.
C
C DATA RMACH(i) / Z3C100000 /
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C DATA RMACH(2) / ZOO100000 /
C DATA RMACH(3) / Z7FFFFFFF /
C
C MACHINE CONSTANTS FOR THE IBM PC - MICROSOFT FORTRAN
C
C DATA MCHEPS(1) / #34000000 /
C DATA MINMAG(1) / #00800000 /
C DATA MAXMAG(1) / #7F7FFFFF /
C
C MACHINE CONSTANTS FOR THE IBM PC - PROFESSIONAL FORTRAN,
C LAHEY FORTRAN, AND RM FORTRAN
C
C DATA MCHEPS(1) / Z'34000000' /
C DATA MINMAG(1) / Z'00800000' /
C DATA MAXMAG(1) / Z'7F7FFFFF' /
C
C MACHINE CONSTANTS FOR THE PDP-10 (KA OR KI PROCESSOR).

C
C DATA RMACH(1) / "147400000000 /
C DATA RMACH(2) / "000400000000 /
C DATA RMACH(3) / "377777777777 /
C
C MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING
C 32-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).
C
C DATA MCHEPS(1) / 889192448 /
C DATA MINMAG(1) / 8388608 /
C DATA MAXMAG(1) / 2147483647 /
C
C DATA RMACH(1) / 006500000000 /
C DATA RMACH(2) / 000040000000 /
C DATA RMACH(3) / 017777777777 /

C
C MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING
C 16-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).
C
C DATA MCHEPS(1),MCHEPS(2) / 13568, 0 /
C DATA MINMAG(1),MINMAG(2) / 128, 0 /
C DATA MAXMAG(1),MAXMAG(2) / 3W -1 /
C
C DATA MCHEPS(1),MCHEPS(2) / 003240,j, 0000000 /
C DATA MINMAG(1),MINMAG(2) / 0000200, 0000000 /
C DATA MAXMAG(I),MAXMAG(2) / 0077777, 0177777 /
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C
C MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES.
C
C DATA RMACH(1) / 0147400000000 /
C DATA ti.4ACH(2) / 0000400000000 /
C DATA RMACH(3) / 0377777777777 /
C
C MACHINE CONSTANTS FOR THE VAX 11/780
C (EXPRESSED IN INTEGER AND HEXADECIMAL)
C
C DATA MCHEPS(1) / 13568 /
C DATA MINMAG(1) / 128 /
C DATA MAXMAG(1) / -32769 /
C
C DATA MCHEPS(1) / Z00003500 /
C DATA MINMAG(1) I Z00000080 /
C DATA MAXMAG(1) / ZFFFF7FFF /
C

SPMPAR = RMACH(I)
RETURN

C
C LAST CARD OF FUNCTION SPMPAR.
C

END

34 PROPG - the propagation constants FKP

The following subroutine determines the propagation constants FKP in all layers of rHe
sphere.

SUBROUTINE PROPG
IMPLICIT REAL*8(A-H,O-Z)
INCLUDE 'CSMCOM.f'

C

VEL = VELOCI
* COMPUTE COMPLEX PROPAGATION CONSTANT

FACI=OMEGA/VEL
WRITE(*,*)NORG,' = NORG'
DO 30 I=I,NORG

FAC2=EPSP(I)/2.DO
FAC3=SQRT(I.DO+(1.1)0/(EPSO*OMEGA)**2)*(SIGP(I)/EPSP(I))**2)
REKP=FAC1*SQPT(FAC2*(FAC3+1.DO))
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FIMKP-FAC1*SQRT(FAC2*(FAC3-1 .DO))
FKP(I)=DCMPLX(REKP ,FIMKP)

WRITE(26,*)'FKP(',I,') = 1,FKP(I)
30 CONTINUE

FKP (NORG+1) =DCMPLX (FAC1,*0. DO)
RETURN
END

This is the end of the propagation constant routine.

35 Legendre Functions

The following- routine gives an array of associated Legendre funcrions P,, andl their
derivatives. This was written wvith Earl Bell and John Penn.

SUBROUTINE PL (THETA,N, P ,DP)
*GENERATE ASSOCIATED LEGENDRE POLYNOMIALS OF ORDER 1 AND DEG N

IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION P(70), DP(70)
SNJ=DSIN (THETA)

CNJ=DCOS (THETA)
PC1) =SNJ
P(2) =3. DOSSNJ*CNJ
DP(1)=CNJ
DO 10 M=2,N

A=M
MP1=M+1
P(MPI)=(2.DO*A+1.DO)/A*CNJ*P(M)-(A+I.DO)/A*P(M-1)
IF((THETA.GE.1.D-6).AND.(THETA.LT.3.141592D0))GOTO 5

DP(M)=M*MP1/2
IF (THETA.GE.3.141592D0) DP(M)=(-l.DO)**M*DP(M)
GOTO 10

5 DP(M)=(A*CNJ*P(M)-(A+1.DO)*P(M-1))/SNJ
10 CONTINUE

RETURN
END

36 CSMCOM.f - the COMMON block

Expansion coofficients, Bessel function values, indice's that kee~p track of Hie mind wer of
rimes filtctions are called, and other pairametecrs are passed thlrouoig li I C( N\INI( N. Yo
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just need to change the COMMON at. this location and recompile to make a run with new
variables.

c CSM common variables
PARAMETER (NLAPLOw 10)
PARAMETER (NLAYF.R=9)
PARAMETER (NZ - 70)
PARAMETER (NGAUPT= 14)

C*** COMMON /MISC/ FKP(NLAPLO) ,CEX,ANP(NLAPLO*NZ) ,BNP(NLAPLO*NZ),

c*** 1 ALPNP(NLAPLO*NZ) ,BETNP(NLAPLO*NZ) ,BJNP(NLAPLO*NZ),
c*** 2 BHNF(NLAPLO*NZ).,Z is an alternate common

COMMhON/CNSTA/'EPSO, OMEGA, VELOCT
COMMON/CFFUN/ANPFN(NLAPLO*NZ) , NPFN(NLAPLO*UJZ) ,ALPFN(NLAPLO*NZ),
1 BETFN (NLAPLO*NZ)
COMMON /COEFF/ANP(NLAPLO*NZ) ,BNP(NLAPLO*NZ) ,ALPT'PCNLAPLOsNZ),
1 BETNP (NLAPLO*NZ)
COMMON /FMISC/FKPF(NLAFLO) ,BDPFN(NLAYER) ,STGPF(NLAYER),

I EPSPF(NLAYER) ,THICKF(NLAPLO) ,ICALLF, ICHFAC, IFMXFV
COMMON /MISC/FKP(NJLAPLO) ,BJNPCNZ) JBHNP(NZ),

1 CEXIBDP(NLAYER) ,P(NZ) ,DP(NZ) ,SIGP(NLAYER),
2 EPSP(NLAYER) ,THICK(NLAPLO),
3 EO,TIME,R,THETA,PHI ,STOPR,NC,NORG,NMINJNORGF,NMINF,MD24
COMMON /ELECV/ERAD ,ETHETA, EPHI ,Z
COMMON /ESCAT/ERADSC, ETHESCý,EPHISC, IPESIN
COMMON /FALBT/RADOFC, NVAL, IPRDIA

COMPLEX*16 ALPNP, ALPFN, ANP, ANPEN ,BNP, BNPFN,
1 BETNP,BETFN,BJNP, BHNP,CEX,
2 E-RAD,ETRETA,EPHI,Z,ERADSC,ETHESC,EPHISC,FKP,FKPF
REAL*8 BDP, ?,DP,SIGP,EPSP,EO,TIME,R,THETA,PHI,STOPR,
I RADOFC,EPSO,OMEGA,VELOCIBDPFN,SIGPF,EPSPF,THICK,
2 THICKF

Here, the components of the Plertric vector in spherical coordinates are E13AD. ETHETA.
and EPHI and R, THETA, and PHI are the coordinates' of a po(intr at Wvhich tie electric
vector was last evaluated. The variable Z is the arlumenpit o)f the last Bessel functions that
were evaluated.

37 MAKE FILE

The subroutines ran be changed and( reomiedseaatlyuing~ the, MAKE file listed
he low.
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FILES=CSM.f COEF.f COEFAS.f DPMPAR.f EVEC.f EVCSC.f EVCINC.f\

TERM.f EVSPHD.f ENORMJf MUEMTX.f MM4EVEI.f BTERAD.f PROPGF.f\

BJYH.f GAUSS.f GETEC.f FDJAC2.f FUNAL.f FNBET.f SURINC.f\

FNTST.f FUNC.f GETLET.f GETNUM.f LMDIF.f LMDIFF.f MINN.f\

FUNCD.f FNT18.f LMPAR.f QRFAC.f QRSULV.f SPMPAR.f PRUPG.f PL.f

OBJECTS=CSM.o COEF.o COEFAS.o DPMPAR.o EVEC.o EVCSC.o EVCINC.o\

TERM.o EVSPKD.o ENORM.o MUEMTX.o MMEVEI.o BTERAD-o PROPGF.o\
BJYH.o GAUSS.o GETEC.o FDJAC2.o FUNAL.o FNBET.o SURINC.o\
FNTST.o FUNC.o GETLET.o GETNUM.o U4DIF.o LMDIFF.o MINN.o\

F'UNCD.o FNT18.o I.MPAR.o QRFAC.o QRSOLV.o SPMPAR.o PROPG.o PL.o

fI.o: ; fort -c $.

csm.x: ${OBJECTS}

fort -o csm.x ${BJECTS}

strip csm.x

If, for example, the name of the make file is sphere.ni then on(, could create the exectitable
module csm.x by issuing the command,

make -f sphere .m

38 INPUT DATA SET

The following is an input data set for analysis of a six layer sphere ( a core pht ell
).The present common allows treatment of from 1 to 9laes

1OOO.OEO 1.OEO O.OEO l.OElS 6 22
60.OEO O.9E0 76.OEO l.7E0 45.EO 1.EO
8.5E0 O.1lEO 5.5EO .08E0 45.EO 1.EO

5.27E0 5.47E0 5.52E0 5.80E0 5.90E0 6.OOEO

1 1.OOD-3 180.ODO O.ODO

1 .25D+O 170.OP)O Q.ODO

1 .50D+O 160.ODO O.ODO

1 .75D+O 150.ODO O.ODO

1 1.00D+0 145.0D0 0.0D0

1 1.25D+0 140.0D0 0.000

1 1.50D4-0 130.000 0.000

1 1.750+0 120.0D0 0.000

1 2.00D+0 110.ODO 0.0D0

1 2.25D-'- 100.ODO 0.ODO

1 2.50D.O 90.0D0 0ODO

1 2.75D+0 80.0D0 0.000

1 3.00D+0 70.000 0.000

1 S.27D+0 60.000 0.000



2 5.47D+0 50.OD0 O.ODO
3 5.52D+O 40.ODO O.ODO
4 5.60D+O 30.ODO O.ODO
4 5.80D+0 20.ODO O.ODO
5 5.90D+0 10.ODO O.ODO
6 6.OOD+O O.ODO O.ODO
1 3.475861092 99.72494519 199.4498910
2 5.380805495 99.72494519 199.149891
0.80000O0DO
1.0010288D0 1.0010388D0 1.0010298D0

1.000000OD-9 1.00000OOD-8 0.O000001DO

The reader can interpret the meaning of the data values by looking at the READ(3 ;tate-
ments in order in the first program listed in this report. These extracted READ :t~rarvinnts
are listed in order here.

THEREADSTATEMENTS
c READ IN CONTROL PARAMETERS

5 READ(3,10,END=1110) FREQ, EO, TIME, STOPR, NORG, NOCR
10 FORMAT(4E10.0, 215)

c READ DIELECTRIC PROPERTY PARAMETERS

READ(3,20) (EPSP(I), SIGP(I), I=1,NORG)
20 FORMAT(6E10.0)

c READ RADII OF SURFACE BOUNDARIES
READ(3,20) (SBDP(I), I=1,NORG)

c READ DEFINING CHARACTERISTICS OF INTERIOR POINTS AT WHICH

c ABSORBED-POWER DENSITIES ARE TO BE COMPUTED.

READ(3,*) NREG, R, THETAD, PHID

C

7732 FORMAT(1PD15.7)
READ(3,7732)T18FRA
WRITE(*,*)' Calling LMDIFF with T18FRA=',T18FRA

IF((TI8FRA.LE.O.DC).OR.(TI8FhA.GT.2.E.O)) THEN
WRITE(*,*)' Stopping program in CSM.f'
STOP

ENDIF
C

c READ from 3 values of FRACR, FRACEP, FRACSG

READ(3,8754)FRACRFRACEP,FRACSG
8754 FORMAT(1PD15.7,2D15.7)

C

WRITE(*,*)' FRACR,FRACEP,FRACSG =

DO 8798 I = 1,NORG
XARRAY(I) = FRACR
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XARRAY(NOJFU+I) = FRACEP

XARRAY(2*NORG+I)=FRACSG
8798 CONTINUE

READ(3,8767)EPSL,TOLL,FACTOR
u767 FORMAT(1PD15.7,D15.7,D15.7)

The last value of the last line of data is FACTOR which is 1 million times smaller than
the recommended value. This causes the Levenberg Marquardt algorithm to do a careful
search close to the starting value initially.

39 OUTPUT DATA

What follows is one of the shorter output data sets called OCOMIPDEN.DAT which
gives calculated power densities at the (R, 9. o) point. listed in the input data set. We also
find a comparison between the total absorbed power as computed by a Poynrin.'r vector
analysis on the surface of the sphere and by integrating the power per unit volunm, vevr

all six layers of the sphere.

1.000000000E+003 = FREQ (one billion cycles per second)
1.00000000 = EO (one volt per meter)

O.000000000E+000 = TIME
1.000000000E+015 = STOPR

22 = NOCR
5.27000000 = LAYER BOUNDARY no 1
5.47000000 = LAYER BOUNDARY no 2

5.52000000 = LAYER BOUNDARY no 3
5.80000000 = LAYER BOUNDARY no 4

5.90000000 = LAYER BOUNDARY no 5
6.00000000 = LAYER BOUNDARY no 6

22 = NOCR
14 = NMIN

0
NREG NCC SAVR THETA PHID Power Density

1 3 .100E-02 .180E+03 .OOOE+00 1.2148501E-01

1 10 .250E+00 .170E+03 .OOE+00 1.1301373E-01
1 12 .500E+00 .160E+03 .OOOE+00 9.5336480E-02
1 14 .750E+00 .150E+03 OOOE+00 7.7171359E-02
1 14 .100E+0I .145E+03 O00E+00 5.8909441E-02

1 14 .125E+01 .140E+03 .O00E+00 4.4385801E-02

1 14 .150E+01 .130E+03 OOOE+00 3.,'460077E-02
1 14 .175E+01 .120E+03 OOOE+00 3.1037602E-02

1 14 .200E+01 .110E+03 OOOE+00 2.4086524E-02
1 14 .225E+01 .100E+03 O00E+00 1.7446906E-02

297



1 14 .250E401 .900E+02 .OOOE+00 1.2369684E-02
1 14 .275E401 .800E+02 .OOOE+00 9.2487407E-03

1 14 .300E+01 .700E+02 .OOOE.+00 7.4911854E-03

1 14 .527E+01 .600E+02 .OOOE+00 5.8454196E-03

2 14 .547E+01 .600E+O? -OOOE+00 1.3243193E-02

3 14 .552E+01 .400E+02 .OOOE+00 4.3939251E-03

4 14 .560E+01 .300E+02 .OOOE+00 4.7558447E-04
4 14 .580E+01 .200E+02 .OOOE+00 2A4503299E-04

5 14 .590E+01 .100E+02 .OOOE+00 9.4160065E:-05

6 14 .600E+01 .OOOE+00 .OOOE+00 6,9334437E-03

1 14 .348E+01 .997E+02 .199E+03 2.7546319E-02
2 14 .538E+01 .997E4-02 .199E+03 8.0076588E-02

0 AVERAGE ABSORBED-POWER DENSITY =1.60618E-02 W/M**3

0 TOTAL ABSORBED POWER = 1.45324E-05 WATT.

1.453240960E-005 total absorbed power by vol integration

362 =no of function calls
Completed the call to LMDIFF in CSM.f

2 = INFO after call LMDIFF

5.2700000E-02 5.2700000E-02 = radii (approx and orig)

6.OOOOOOOE+01 6.OOOOOOOE+01 = EPS (approx and orig)

9.OOOOOOOE-01 9.OOOOOOOE-O1 = COND (approx and orig)

5.4700000E-02 6.4700000E-02 = radii (approxc and crig)

7.6000000E+01 7.6000000E+01 = EPS (approx and orig)

1.7000000E+00 1.7000000E+00 = COND (approx and orig)

5.5200000E-02 5.5200000E-02 = radii (approx and orig)

4.5000000E+01 4.5000000E+01 = EPS (approx and orig)

1.0000000E+00 1.0000000E+00 = COIJD (approx and orig)

5.8000000E-02 5.8000000E-02 = radii (appiox and orig)

8.5000000E+00 8.50OOOOOE+00 = EPS (approx and orig)

1.IOOOOOOE-O1 1.1000000E-01 =COND (approx and orig)

5.9000000E-02 5-9000000E-02 = radii (approx and orig)

5.5000000E+00 5.500000OOE+00 EPS (approx and orig)

8.OOOOOOOE-02 8-O0UOOOOE-02 = COND (approx and orig)

6.OOOOOQOE-02 6.OOOOOOOE-02 = radii Capprox and orig)

4.5000000E+01 4.5000000E+01 = EPS (approx and orig)

1.OOOOOOOE+OO 1.OOOOOOOE+O0 = COND (approx and orig)

At the end we find that the minimization program wvas able to re(ov-r Ohe radii of Ole

spheres that separate layers and the permnittivit~y andl (ondictvivt~y of Qie layers from exarin-
in~ing the expansion coefficients of the scattered radiatioin tsing only 362 forward scattering

solutions.
The following is a listing fromn a file that is created by XVI3ITE(*,*) commannuds tHim.

describes the recovery of expansion coefficients from integration and gives, tHip pro)lmg;1tion,

constants in all layers. The following is a listing of Bessel, anid F ankol Co iction vahies.
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(4.78211328 , 6.333847323E-001 )=Z
25 - NCC after CALL BJYH

14 - NOC after CALL BJYH

14 - NC before CALL BJYH

1 = IA?

BJNP BHNP

-2.4624054E-01 4.2471119E-02 -1.0982323E-01 6.8131434E-03

-8.5106205E-02 -1 .2098671E-01 -1 .5570898E-02 1. 1421268E-01

1.8389119E-01 -1.1011255E-01 1.0954976E-01 6,4873001E-02

2. 590753SE-O1 -1 .7184874E-02 1 .3696629E-01 -6.2462546E-02

1.8552786E-01 3.6028465E-02 7.5582111E-02 -1.8082540E-01

9.2896810E-02 3,8372659E-02 -4.1469422E.-02 -2.9050167E-01

3.5962168E-02 2.2901727E-02 -2.5630656E-01 -4.634609SE-O1

1. 1283356E-02 1.0086319E-02 -8.0727371E-01 -8.5698502E-01

2.9381563E-03 3.5836171E-03 -2.5821012E+00 -1.8486907E+00

6.3969724E-04 1 .0739372E.-03 -9.0690603E+00 -4.4068432E+00

1. 1503418E-04 2.788932SE-04 -3.5108388E+01 -1.0668253E+01

1.6166966E-05 6.3916381E-05 -1 .4854467E+02 -2.1565603E+01

1 .3960425E-06 1 .3097212E-05 -6 .8051430E+02 1 .7298640E+00

-8. 2149394E-08 2.4229998E-06 -3.3465467E+02 4.9352935E+02

We integrate over each layer sepIarately to get the total absorbi-d p~ower anni conmpare

this result with the Poynting vector analysis. The following data shows the conlJiirisnul of

these two calculations.

1.453240960E-005 total absorbed power by vol integration
TOTPOW = 1.453240756E-005 = total absorbed power
as determined by the Poynting vector analysis

completed the call to GAUSS

The followingT shows a comp~arison between tile comp)utation of the radial. t heta. an~d phi
components OfL the electric vector by vxart formula and by the Vector !sphecrirall harniloii~c
expansion.

( .OOOOOOOOOE+000 , .OOOOOOOOOE+000 )=CZERO

(4.952630924E-001 ,3.601589S00E-001)

ERADI(E radial by exact formula in CSM.f)

(4,952630924E-001 ,3.601589500E-001 )
=ERADIN (E radial in by EVCINC.f) (by the series)

(-4.585376045E-002 ,1.59206685)

=ERADSC (E radial. scat from EVCSC..f)

C2.859402797E-001 , 2.079378668E-001)
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= ETHETI (E theta by exact formula in CSM.f )
( 2.8S9402797E-001 , 2.079378668E-001 )
= ETHEIN (E theta ±i from EVCINC) (by the series)

( -4.003204705E-001 , -2.150255645E-001 )
: ETHESC (E theta scat from EVCSC.f

( -5.718805594E-001 , -4.158757335E-001 )
- EPHII (E phi by exact formula)
( -5.718805594E-001 , -4.158757335E-001 )
= EPHIIN (E phi in from EVCINC.f) (by the series)

c*********************** ****************************

( 5.255407044E-001 , 4.396722339E-001 )
= EPHISC (E phi scat from EVCSC.f)

Tn the following we check to see that the boundary condition which says that the
tangential components of the electric vector are continuous across the boundary is indJPed
satisfied on the digital computer.

C 4.494093320E-001 , 1.95222580 ) = ERADI+ERADSC
( 4.494093320E-001 , 1.95222580 ) = ERAD

( -1.143801908E--001 , -7.087697742E-003 ) - ETHETI+ETHESC
( -1.143801908E-001 , -7.087697742E-003 ) ETHETA
C -4.633985508E-002 , 2.379650041E-002 ) = EPHII+EPHISC
C -4.633985508E-002 , 2.379650041E-002 ) = EPHI

The following are intermediate printouts showing the Muelier matrix call anl the tosring
of thesurface integration routine with a function of 0 and o whose surface integral is known.

We are about to call MMEVEI
( 1.00000000 , O.OOOOOOOOOE+000 ) - CEX before CALL MMEVEI

We have finished CALL MMEVEI
Layer no radius thickness
1 5.2700000E-02 O.OOOOOOOE+00
2 5.4700000E-02 2.0000000E-03
3 5.5200000E-02 5.0000000E-04
4 5.8000000E-02 2.8000000E-03
5 5.9000000E-02 1.OOOOOOOE-03
6 6.OOOOOOOE-02 1.00000OOE-03
6.OOOOOOOOOE-002 = RADIUS in GETEC.f
6.OOOOOOOOOE-002 = BDP(NORG) in GETEC.f

( 1.25750702 , O.OOOOOOOOOE+O00 ) = ZBFA in GETEC.f
Finished calling Bessel functions in GETEC.f
C 9.402474840E-002 , -2.02467295 )= h_2(FKP(NORG+I)*RADIUS)
Finished CALL BJYH in GETEC.f
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16 = NC after CALL BJYH in GETEC.f
14 = NMIN after CALL BJYH in GETEC.f
About to call SURINC with FNTST as arg.
6.OOOOOOOE-02 16 0 2 2 = RADIUS,NGQPTS,ISIND,NSITH,NSIPH

( 1.440000000E+001 , 4.114285714E+001 ) =

(output from SURINC with FNrST)/(PI*RADIUS**2)
1.440000000E+001 = exact value of real part
4.114285714E+001 - exact value of imag part

We next test the ability of SURINC to extract the expansion coefficients by integrating

the inner product of the full electric vector of the scattered radiation with a vecror sphlri'al

harmonic that is part of the complete orthogonal system that forms a base of the Hilbort
space in which the electric vector is represented.

We are about to call SURINC with FUNAL as arg

\par
The following output shows a comparison between numerically

computed $\alpha$ expansion coeficient using surface integration
of an inner product of the electric vector of the scattered
radiation and a vector spherical harmonic and the coefficient
computed directly by the Mie solution.
\begin{verbatim}

C -1.507217348E-002 , -3.036661101E-002 )
Computed ALPHA expansion coefficielt

( -1.507217348E-002 , -3.036661101E-002 )

= ALPNP(NORG*NMIN+NVAL) (by exact formula)
( 1.00000000 , -2.750070753E-016 ) =

ALPHC/ALPNP(NORG*NMIN+NVAL)

86 = NORG*NMIN+NVAL

6.0000000E-02 16 0 4 4 = RADIUS,NGQPTS,ISIND,NSITH,NSIPH
6 = NORG
14 aNMIN

86 - NORG*NMIN+2
2 = NVAL

( -2.702826945E-002 , 8.883191962E-002 )
= BETNM from GETEC.f after call SURINC
( -2.702826945E-002 , 8.883191962E-002 )
= BETNP(NORC*NMIN +2) (by exact formula)
( 1.00000000 , 7.149399175E-017 ) =BETNM/BETNP(N)

gives the ratio of the SURINC output and the exact value.
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1 a NVAL
( -5.323296461E-001 , 3.592983774E-001 )
- BETNM from GETEC.f after call SURINC
( -5.323296461E-001 , 3.592983774E-001 )
- BETNP(NORG*NMIN +1) (by exact formula)
C 1.000000000E+000 , -3.582105228E-016 )
-BETUM/BETNP(N) (ratio of SURINC determined and exact values)
85 - NORG*NMIN+I

C 5.37080280 , 4.35841241 )
- BETANM(1)/BETANM(2) (numerical expansion coefficient ratio)
( 5.37080280 , 4.35841241 ) -

BEThP(NORG*NMIN+I)/BETNP(NORG*NMIN+2) (exact ratio)
( 1.89851672 , -6.126018911E-001 ) = BHNP(NVAL+2)/BHNP(NVAL+I)
C 1.286653062E+001 , 4.98435490 )
- BTNM1/BTNM2*CHFR12
( 1.286653062E+001 , 4.98435490 )
* Betal/Beta2 * Hankel2/Hankell

c

3 a NVAL

( -3.302310388E-004 , 3.555414103E-003 )
- BETNM from GETEC.f after call SURINC

( -3,302310388E-004 , 3.555414103E-003 )
B BETNP(NORG*NMIN +3) (by exact formula)

( 1.00000000 , -2.161700745E-015 )
=BETNM/BETNP(N) (ratio of SURINC and exact formula values)

87 n NORG*NMIN+3

( 2.547131556E+001 , 5.23619751 ) - BETANM(2)/BETANM(3)
( 2.547131556E+001 , 5.23619751 ) =

BETNP(NORG*NMIN+I)/BETNP(NORG*NMIN+2)
( 1.89851672 , -6.126018911E-001 ) - BHNP(NVAL+3)/BHNP(NVAL+2)
C 1.774781418E+002 , 3.647265045E+001 )

= BTNM2/BTNM3*CHFR23 (SURINC determined ratios)
( 1.774781418E+002 , 3.647265045E+001 )

= Beta2/Beta3 * Hankel3/Hankel2 (exact formula ratios)

I BDPFN(I) EPSPF(I) SIGPF(I)
I 5.2700000E-02 6.OOOOOOOE+01 9.OOOOOOOE-01 in FUNC.f

2 5.4700000E-02 7.6000000E+01 1.7000000E+00 in FUNC.f
3 5.5200000E-02 4.5000000E+01 1.O000000E+00 in FUNC.f
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4 5.8000000E-02 8.5000000E+00 1.1000000E-01 in FUNC.f
5 5.9000000E-02 5.5000000E+00 8.OQOOOOOOE-02 in FUNC.f
6 6.OOOOOOOE-02 4.5000000E+01 1.0000000E+00 in FUNC.f

Test of subroutine FUNC
FVEC(I) ALPFN or BETFN ALPNP or BETNP
-1 .5639835E-01 -1 .5639835E-01 -1.5639835E-01
-2. 3334588E-Oi -2. 3334588E-01 -2. 3334588E-01
-5. 3232965E-01 -5. 323296SE-O1 -5. 323296SE-O 1
3. 5929838E-01 3. 5929838E-01 3. 5929838E-01
-1.5072173E-.02 -1.5072173E-02 -1.5072173E-02

0 -3.0366611E-02 -3.0366611E-02 -3.0366611E-02
-2. 7028269E-02 -2. 7028269E-02 -2. 7028269E-02
8.8831920E-02 8.8831920E-02 8.8831920E-02

-1 .3271589E-03 -1 .3271589E-03 -1.3271589E-03
-1 .2307263E-03 -1 .2307263E-03 -1 .2307263E-03
-3.3023104E-04 -3.3O231OSE-O4 -3.3023104E-04
3.5554141E-03 3.5554141E-03 3.5554141E-03
-2.8230504E-05 -2.8230504E-05 -2.8230504E-05
-1 .4539905E-05 -1 .4539905E-05 -1 .4539905E-05
-5 .4127263E-06 -5 .4127263E-06 -5.4127263E-06
8. 1250403E-05 8. 1250403E-05 8. 1250403E-05
-4.8707312E-07 -4.8707312E-07 -4.8707312E-07
-2.7316679E-07 -2.7316679E-07 -2.7316679E-07
-7.9921910E-08 -7.9921910E-08 -7.9921910E-08
1,2649466E-06 1 .2649466E-06 1 .2649466E-06

Above is a coinparison (if FUNC created and original vxpaInsi( n ('ofthcif-tit dctromilini
by exact formnula. We determrnine sphere IproI)(rties by allowitigp ar-giun''nr, of FUNC to)
range and finding thoise valuies which cause at match of known expansinu uo(wffierilrs and

those dc't'rminpd by FUNC.
A funcrtion simuilar to FUNC is passed as an EXTERNAL variablv ar-giurleli MOt' the

Lovinberg Marquardt algorithmn siibrotircn anl when rh'V nhlilinuza7tiOu1 aloitIAM111 Itiis I-(,

covpered the phelire properties the expectod differences in eXpal'isoll c-l whirio'n vallt s sle ilul
be zoro. The following table, shows the actual values after thle m ninnization so" granl1 -iic-
ressfully termninated.

Printing out FVEC values from FUNCD
9.0901279E-15 1.2844746E-15 4.8402967E-15 -1.2273610E-14
-3,3157996E-14 2.4561479E-15 -8.8181479E-15 3,2133929E-14
3.0190224E-14 2.2283261E-14 -6.2852876E-15 4.9189207E-14
-1.0146840E-13 -4.2892005E-14 2.0803826E-17 8.2216722E-14
-5,6499749E-14 3.1852208E-14 2.13016417E-15 1.1561364E-13

NO HUJPO0UT
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40 Applicability

By removal of noise from the data prior to processing one could possibly transmit
field data to a computer with many processors working in parallel to discriminate between
layered particles which would probably be man made and could be a source of concern
and nonlayered particles such as ordinary water droplets just by using scattering data.
Perhaps hundreds of coherent gated laser beams could be created by crystals and could
be made to overlap significantly on an arbitrarily small remote volume thereby permitting
droplet interrogation at some distance from the cloud droplet or droplets could be sucked
into an autofunctioning nephelometer that would transmit its "measurements" to a site

that would be capable of processing the measurements.
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W\e show how a coml)uter can learn how to approximate processes in ,oniplex chcmial
reactions with high accuracy. This has applications in the improvement of the dlesign of
aircraft engines. power plants. and the processes used for the destruction of toxic chemials.

We describe the chemistry of methane combustion and the conserval ion law, a;soiated
with a one diniensional flame. Our motivation is to develop a way of understanxdin chemical
reactions occurring in a flame with a view toward reducing harmnful emissions.
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1 INTRODUCTION

We try to improve computation .time by for each species approximating growth and
destruction rates for species of interest in local regions of concentration space. We have
exact formulae for the concentrations and try to get the program to iearn how to make
highly accurate local approximations. The accuracy turns out to be important if you happen
to be in a region of concentration space where the net rates are changing from increasing
rates to decreasing rates. The situation of a decreasing net rate holds if the positive rate
of production arising from an approximation of the forward rates of creation minus the
positive rate of destruction is a negative number. Numerical round off error occur, when
these two numbers would quite correctly agree to d decimal places and the accuravy of
each approximate does not exceed this number of decimal places. If approximation.- of
rates or even if one is numerically solving the full problenm one has to be. siur, thiart the
method of solution has enough accuracy to avoid this type of round off error. A high level
of approximation can be achieved with a low order polynomial providltd that the domaain of
the polynomial is a sufficiently small region of chemical concentration space. A high e'nough
order of the method for solving the differential equations must also be used.

The objective of the work is to (Ietermine a method of r.laking the flame calculations with
great speed and accuracy so that burners can be redesigned to reduce dangerous emission-,.
We are testing our ideas with a one dimensional premixed flame progrziu. To illt'ii-id
the mathematics associated with the computer prograim we write out the ba,.sic ,oiimrlarv
value problem and show that there is only one solution in a space of sufficiently reg•ular
functions.

1.1 Uniqueness of the Premixed Flame Problem

Ini the prelfixed flame probleim we assumne that the cocentratit )ii. ,r lt'he l. 'himilak
quickly reach a steady value and then calculate local comcentration of ,ht'nii'ul Spe'c'ies ali( I
temperature. In ([70]) the boundary vali x prtoblelm requires solution Of thl' difft'rt'it i,;1

equationis giving the mn1a.s.s fiat'tion I•. of the kth species and the t,.1p,.) Itilirer. WV, 1,t,±,l Ihy
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defining the quantities, where

T = the temperature
I = mass fraction of kth species
p = the pressure

IV• = molecular weight of kth species
p = the mass density

4 (d/dt)wk. = molar production rate of kth species
cp = mixture heat capacity at constant p

= kth species heat capacity at constant p
= kth species diffusion velocity

Ilk = kth species specific enthalpy
= the average molecular weight

the universal gas constant
0 = reactant stream equivalence ratio
T, = the unburnt temperature. and
Ek(o) = incoming kth species mass flux fraction

We then solve the differential equations.

d3dIdI. + ' - TV = 0 ( kd J1.2..I. )
dt d x (" dt "-"

and

d.1( (IT (I d(I.
(It (IW

K . .- =1.1.2

k'=1 C k= I

subject to the bounidary conditions.

T(0) = 0 1.1.3i

d--- .(0) + p(O) 1.0O) I•,00) = ,io( 1.1.4)
di d

OW for k in {1.2,.. .K} and

A dT ,
(0) f-•k(o) [h,0T(0)) - h,(T,,j)] 1.1..5

k=1

as well as
LIM (,IT 0

.r'.r-jF) =• O=1.0(1.1.7)
LIM3I
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In practice in a computer program the limits (1.1.6) and (1.1.7) are replaced by precise
values at an x that is remote from the initial value.

We now show that under suitable regularity conditions oni the temperature T and the
mass fractions 1I. there is at n2vst one set of functions T and Yj through I',K which satisfy
equations (1.1.2) and (1.1.1) subject to the boundary conditions (1.1) . (1.1.5), and (1.1.4)
and the conditions at infinity (1.1.7) and (1.1.6). WVe let T be the difference of two possibly
different temperatures and let Yk now denote the difference between two possibly different

mass fractions of the kth chemical species that appears in the flame. We assume that the
unburnt temperature 2t, is a constant.

We use a variational formulation and dual space arguments to verify liniqueness of lie
solution of the premixed flame boundary value problem. Letting T now denote the difference
between two temperature distributions in a nonunique solution we have upon multiplying
all terms of equation (
refeq: xtoinftvoftemperature) by the derivative of T and integrating from x" eqiuil zero e .t"

equal -c we deduce that

f d-1M dT dT -dT. d A. IT)]'\1 .
lo dt dx dx - r d--x \ d J(x +

A, ._5_. dT
C(Pk.) dx =0

Integrating the high order derivative term in (1.1.8) we deduce that

J CP~'(d-) jd 1 LBIM dT)
-- 2 d t ( x x )

+ A- (T + JO'[. ~.. L 0 (1.1.9

As the integrated term involving the derivative of temperature at 0 is positive and the
temperature derivative goes to zero far away from the flame. x-e tt-- Iliw equation , 1.1.9.
which is a sum of nonnegative terms being equal to zero. tolls us that the temperature
difference is identically zero.

It is even easier to show that there is at. most one solution of the conccintratiohi equation
as these equations are first or(ler. The unliqIleness of the solution of this eqhlation based on
the uniqueness of the solution of the CawLhy problem sine the differehiril '(jlvatiot 1.1.1)
has the sanie form as the differential e(1,uationi.

,I.--- f .r. -f ,.) = 0 (1.1.10)

subjeict to the initial condition (1.1.4) which may be transformed into thi, initial coididjion

K.(0) = .4 1.1.11)
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1.2 Approximations in Concentration Space

W'e approximate the chemical reactions of miethane by relating the rates (o/ot)-,11 .,) of
production of species i. the rates (0910t)W(d.Z) of destruction of species i to the logarithmns
of the concentrations X, of all p)articipating species on sufficiently smnall coinpact subhsets of
concentration space by the rule,

4 /~ N

fn at ao + Y.7a., en(X,) +

If we let the positive (Iuantity A,) he defilied by

a0 =C() 1.2.2)

then

tn(71 (4o xr) [( jx~~1.2.31
This would mlean that the positive rate of productioni of species Iis giveti byV

AO xl--ý,61(.1.2.4 1

which is not the usuial form of a chiemical rate. Ho~vevor. we canl approxilMate thiS rare wvith
arbitrary accuracy by a p~olynomnial of degree tw o in the logarithms,,. of the coilcentrathtiol)iý'11ýt

by making the (loiain of approximation a sufficiently smlall compiact sustof coilceijira 11011

space. Furthermore. if these applroximlates of lprorllictio11 rates aillI(ldestruction rat'o, aIre

siufficiently accurate, then we couldl applroximate the niet prohwuttioii rate by%

___ -t Of.

or ~~even thlough the actual cheuncavil react ion rates are thlose demcribedI ill the nex,,t meet 011. By
comparison of tle exact rates withi thiese applroximlate rittes wve (,,aiI have thme c('0ip 1 ittlt ci hl(l
zones of accuracy of the approximations by comlpar-ing the exact fonulefor the ra 1Itelý
with the approximate formula over time specihirc oninhmat subset of concenltrat ion ilacev. 13y

coniputer learning. thmen we run the actual p~iograiin whlenever We mlove d111iuiii t~ite coliirs. of

Solutionm into a dlomiaiii of conmcent rationh Sp oce for whlich we (I ) not have aIII a piusxi ma io i~

schienie of known accuracy, .

To estimlate accuracy, nun1iericall1v over a colinpac t sillb set of a mmigin r (linmeimsi umal c oil-
ceiltration space we need a design for a coimputer experimient (Sac-ks 164] ) to decide, hiow to
sainpile a region oif couicent~ra tion pare' to co(0n~mpae our exact forinuilio a1nd the a; p uox i mat -
ing chemica~l reaiction rates and( to vaida1;te- thle 1use of t liese flpprOXiiuII;t iuu"1 ra;te1SII iit fil>ter-

Co let with tihe ra (S sed inl thle 1. 114,7al flauime ,o(1c%
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1.3 Local Chemical Reactions

A summary of the literature treating the complex methane conibuistion reactions includ-
ing

e hydrogen oxygen reactions,

* carbon monoxide and hydroxyl reactions

* HCO radical reactions,

o CH and CR!2 radical reactions.

* CH3 radical and oxygen molecule reactions,

* CH30 and CH20OH reactions. and

* methane reactions

and the associated rates are given in the paper of Frenklach, Wang. and Rabinowitz (129])
The paper of Smooke and Giovangigli ([70]) and Peters ([591) describe methane coi,',b-

sion. The smallest number of key reactions ([70]) that are considered are 25. Our purpose
here is to write down the differential equations describing the rates at which the 'onien-
trations of the chemicals involved in these reactions change. Wc begin by writing ,lown the
chemical reactions. A forward reaction involving the hydrogen free radical i.-

H + 02 - OH" + 0 1.3.1)

with a skelatal rate coefficient given by

k(l.f) = 2. x 1014 x Tx r.rp(-16S00/(R.T))

and the associated backward reaction is

OH- + 0 , 11 + O (1.3.2)

whose skelatal rate coefficient is given by

k(~b) = 1.5 01 x 70' 0 . x e.rp(-690/(R. T))

An oxygen radical nid the hydrogen niolecule interact to form a hyroxyl and a hy(lro4.O',
radical in the reaction

0 - H2 -- OH + H (1.3.3)

with a skelatal rate constant of

k(2.f) = 1.8 x 100 x T x cxp(--SS26/(R. T))

The corresp)onding backward reaction is

OH 4- H --, 0 + H2 (1.3.4)
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with skelatal rate constant

k('2,b) = S x 109 x T x erp(-6760/(R. T))

The hydrogen molecule and hydroxyl radical combine to form a water miolecule and a hy-
drogen radical in the reaction

* H2 + OH - H.20 + H (1.3.5)

with skelatal rate constant

=(3.f) = 1.17 x 10"' x T'. 3 x cxp(-3626!(R. Tn)

The associated backwards reaction is

H20 + H -- H, + OH 1.3.0)

with skelatal rate constant

k(3.b) = 5.09 x 109 x T' 3 x c.rp(-1S3SS/(R. T))

"Two hydroxyl radicals can combine to form an oxygen radical aild water in tlht, reaction

OH + OH -- + H 20 (1.3.7

with a skelatal rate constant given by ([70])

k(4. = 6 x 1× x T'.3 X

"The reverse reaction has the form

0 + H20 ---, OH + OH (1.3.$,

where the skelatal rate constant has the form.

k(4.b) = 5.9 x 10' x T' :1 x f.rj( - 17029/(. 1 T)

There are several reactions where a substanice called 31 represe.ntriii other m,1'eul'ru
moieties stimulates a reaction just 1by collision. The fiij 1t of these hIa tlie forili

H + 0, .11 - HO mho.r + .11 (1.3.9

with a skelatal rate constant given b)y

k(-,.,) = 2.3 x 10"" x T`8

H + H02 Q OH + OH (1.3.10)

with a skvl;it,1 rat,- constant of

k(,;.f) = 1.5 x 10'' x (.rp(- 100-/f I? T "
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The same two radicals may produce a different respon-;e given by

H" + H102 H2 + 02 t1.3.11)

with a skelatal rate constant of

k(7,f) = 2.5 x 10'3 x cxp(-700/(R .T))

Another reaction with radicals which reproduces water and oxygen molecules is

OH + H02 -. H20 0-2 (1.3.12)

with an associated skelatal rate constant of

k-s&f) = 2. x 1013 x exp(-1000/(R. T))

When methane burns in air. carbon monoxide can be p)roduced and this ran react with a
hydroxyl radical to give back carbon dioxide and a hyrdogen radical as indicated by thie
relation,

CO" + OH -- CO 2 + H" (1.3.13)

whose skelatal rate constant is

k(9 .f) = 1.51 X 107 x T'' 3 x exp(755/(R. T))

A backward rioaction has the forim

CO.2 + H - CO- + OH (1.3.14)

with a skelatal rate constant of

k(9.6) = 1.31 x 10' x T'"x n.rp(-22337/(R. T))

A hot methane interaction with a moiety .1l giving two radirals is denoted in the rolatjoio.

CH, + M - CH; + H 4- l 1.3.15)

with a skelatal rate constant of

k(j1o) = 6.3 x 1014 x V' x r.rp(-104000/(R. T))

and the )bakward reaction is

CH., + H + A! -• @C4 + Al (1.3,16)

with a rate constant of ++

k(O.b) = 5.2 x 10`2 x TUx xp(1310/(R . T))

A reaction with nmthane and a hydrogen radical which can produce a CH, radical aild
hydrogen gas is

CH., + H - C'H:, + H2  (1.3.17)
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with a rate constant of

k(i1,f) - 2.2 x iO" x Tx ep(-$750/(R T))

The reverse reaction is
CH3 + H2 --* CH4 + H (1.3.1-)

with a rate constant of

k(li,b) = 9.570 x 102 x T3 x exp(-8750/(R. T))

Another inethar -:,action is

CH4 + OH - CH3 + H20 (1.3.19)

with a rate constant of

k(l2,I) = 1.6 x 10' x T2P' x f.rp(-2460/(R. T))

and the backward reaction is

CH 3 + H 2 0 - CH4 + OH" (1.3.201

with a rate ronstant of

k)l...b) = 3.020 x 105 x T2-1 x e.rp(-17422/(R T))

A reaction between a CH3 radical and an oxygen radical is

CH. + 0 - CH 20 ± H u1.3.21)

with a rate constant given by

k( 3 .jf = 6.8 x 10"

A reaction reducing CH 20 concentration is

CH.O + H - H-C') -4- H, (1.3.221

With a rait.t, (c'01tallt givenll b

k1l..) = 2.5 x 10': x T x .rp(-3991/(R. T)

A •vc'ndl reaction reditiing CH 2 0 C) concentratiou is

CH2 0 + OH -. HCO + H(,O (1,3.23)

with a rate., (nlistalt of

= 3. x 10'" x T" x (.rp(-1195/(R. T))

A lact1i0l1 iiivolviiia, the, r l' i'tio iO (f v(li'cllt rattl' l of thLw hyv(lr,•(' r ,li,'l i.

H110 C H -. CYO + H, (1.3.24
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with a rate constant of

k]c6,f) = 4. x 1013 x T' x exp(-O/(R. T))

A hot collision reaction involving the HCO radical bumping into the molecular moiety .11
is

HCO + Al - CO- + H, + M (1.3.25)

has the reaction rate ([70])

kll 7 =f 1.6 x 1014 x r x e.rp(-14700/(R. T))

The CH3 radical and the oxygen molecule have the reaction

CH3 + 02 - CH 30 + 0 (l.3.26)

whose rate constant ([70]) is

k(l1sfl 7. X 1012 x To x txp(-25632/(R. T)

A reaction involving the CH,. radical and the hydrogen radical given by

CH 30 + H- , CH2 O + H2  (1.3.27)

has the rate constant ([70])
k( 1 .(jf) = 2. x 1013

A hot interaction of the CH30 radical with another unchanged moiety .1! zi.•

CH3 O -r .M1 , CH2 O -,- H + M1 (1.3.2S)

has the reaction ratp

k(20,.) = 2.4 x 1013 x exp(-2S312/(R. T))

The HO, radical interacts with itself in tht- rea,'tion

H02 + H0Q - H1202 +± 01 1.3.29)

with the reaction rate
ku.f) = 2. x 101

Hydrogen p.roxirle hiteracts with a hot Inolety .\1 ,cT'ording to the ruq,'tiiL

H20 2 + -11 - OH + OH + .11 1.3.3 0 i

with a rate constant. given by

k(•22.f) = 1.3 x lC"7 x (.rp(-45500/)/ - T))Hydroy lqi( 1rorid,

Inl a highl(r ordler intrf , ction two hydroxyl raei,-tl. togt her collidhe wa rh ia o ,hlt.'-clar m ,initty
.M1 in the reaction

OH + OH + .Al -- .1O + -3! (1.3.31)

314

- - - - - - - - - - - --l II i--I1 II I - il - iI - .. -.. . ......



with a rate constant of

k( 22,b) - 9.86 x 101' x exp(5070/(R. T))

Hydrogen peroxide can interact with a hydroxyl radical in the reaction,

H 20 2 + OH" --, H20 + HO' (1.3.32)

with a rate constant of

k(.2.1) = 1. X 1013 x exp(-1SOO/(R T))

The reverse reaction that creates hydrogen peroxide is

H20 + H0 , H1202 +1OH1 (1.3.33)

and has the rate constant

k(23.b) = 1. x 10" x (.rp(-32790/(R. T))

The hydroxyl radical and a hydrogen ion react by a hot collision with ;,toth,.r iiioI,,','lu"
moiety .1 by the reaction.

OH + H + 3l , H20 + -l i1.3.34,

with a rate constant of
kf = 2.2 x 10"2 T`

In the last reaction that we consider two hydrogen ions interact with a mole,'ular u,,i.ery .l
in the reaction

H- + H- + .l -- H2 + Al (1.3.33)

1.4 Chemical Kinetic Differential Equations

\We have to Solve thl, chehmi,'al kinetic ,liffi ential iqu1ation.c ' , atl,. In IIhe.

pr:-vious section we listed 35 chliencal reactions involving 14 molecuhls or mnol,,Ilalr 11 I itt 1cs
and the unaffected hot third body [.%I] which collides with a r.agent or ',vaitit.s 1,lit itself is
mmchammgerl during the reetion. The loal cvii niistry is ,le.scriburl by1, 14 ,r'liriii my ,iff rii itial

equations at ca,'h spatial point b1lt. the convicntratiia • li.5 s whish ", ,1,.''i , iv rtii,'ti m
(lifflisioni equations. Using the notation of tI' prev-6 is, swr tion11 th l t o',lii'a i y ,[if,.rlt 1i1
"eq(imation for hydrogen ion or [H] comicuntratic1n is

flH] - - " I)IH'j [0 j] + k(I,h)[OH ] [0 1
(It

- ,.',,,, ]. [H1]. + A1.f)[O]. [H2] - k.,,,,[ 2O) l. [H I + k1. ,),H 2 ] [H. 1] +

- 1,- , [O ..j [.11 - I4",, " [t! ][H.()] - I.7Il ] I40J 4

k.,.J[C()]. V)HIt -- i', [().]. {11 j +
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+ k(10,f) . [CH4J[A'f] - k(Io,b) , CHijJ -[If] .[M)
- k~if,(CH4f4]H' + k(ll,b) [CR3] [H2]J

+ k(1,3,f), CH~jj [0]1 - k(14 ,I) (CH2OJ [H']
k1 - HCO]j . [H]1 + k17 . [HCO] . [M

- i [CH 3 0] - [il] + k2o [CH3 0-*] [Mv]

- k 2 4 .f OH] .[IT] [All
- k25 - (H]2. f~i)(141

The ordinary, differential equation for the oxygen molecule concentration is
d[021 H(~ b [~~~

- = -H)(2 . [.)1 + .0!'.[Q

- k'i(C'4j .(0.4 + k2l [HOj2]f 1.4.2)
The differential eqiiationi for thef hydroxvI radical [OH) is given ))N

d
;T[HI= k(if)[H-][0 2] - j6[O .O)

+ k12.f1[0) [1121 -- k,(2.b)(H 2J [OH]j - k'(3 1/)[11 2 J(OH,] + k,,[2jH
- k(4.1)(O1I72 4. kfb(O)qj-(H 20J + kpjf)(HJ(uo2 ]-- 9 ,CjVH

k19.b1)(CO. 2 JH-) - k-(1 2,f) (CH4)[ OH)j + k(l 2.b)[CHi)[H20J k1~[C. H.,0JH 101
+ k('22j)(.F. 202)[MJ- 1 1[11 ~1 kA:, 23.I,[H 20.)[OH

+ A-(2:1.b)[H 201[H102 ] kr24 ,1 ,[OH-][H')[.Vl] 11.4.31
The dhifferential equation for the oxygen radlical is given I)%

d
(Ii [0] = [HJ .2] - kl,AJ[oijo - AOH21 , .

+ k12,b) (OH')[xJI + k).I~f) . OH]12 
-

k(j13j) .[CH~iJ[O] + k(U,,f) [C!!.j[] j (0A 4.4)
The d-ifferential equation for h~ydroge~n gas is

(I H1 2f) [0,][H~j 4- 4I(2.,)[(.][Ji ] .k:Q.)[1 2JfOH-J +k 1 .f 20()(it

+ kj1 (HIZ)(1Z(j + A-( .j 1[Cif.,J[H] - k(,[~~C'H:1jWu2] + A-IJ[C~JH

Thu diffriv-it~ial eqti 1tiolI for wa~tvr vaIpor is gi venz by

(If:)] kc~, ][HJI[0H ] -- A I,)1;H,fHOj[H-j +l k1 I,AOH]-' ) -A "(
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+ k(8.f)[OH]I[HO 2] + k( 1,2,f)[CH 4 ][0H-] - k(12 ,b)[CH3]I[H 2O0] + k(j.s.f)[CH2 O][OH-]

+ k(23.J)[H-202] [OH] + k( 24 ,f) [OH'][H¶Zvf] - k(23 ,b)[H 20] [H02] (1.4.6)

The differential equation for the carbon monoxide radical is given by

d
WtjCOi = k(gf)[C0-] -[OH]1 + k(9,b)[C0 2][(H]

+ k( 6,3f)[HCO]I[H]l + k(17,f)[HCO-][M] (1.4.7)

The differential equiation for carbon dioxide is

d( 21=k(9.f)[CO][(OH-] - k(!9b)[C'0-2][H-] ( 1.4.S)
dit

The differential eqjuationl for miethiane is

d- (CH4]Wdt

- k(jc.f)[Mj'I[CH 4] + k110j b)[CH]T][H] [M\]

- k(lj~f)[CH4] [H]1 + k(j,h)[CH.j(H 2]

- k(, 2.f)[CH 4] [OH]j + k112,b1[C'H-][H20] 149

The differential equation for the niethy~l gr:oup radical is

d
~[CI3 =k(I(j~f)[C'H.1][A1I] - k(i()b)[C'H H3 ][ (111[\ +k 1.'f )[C'Hj[1H-]

- k(I,.b)[CH,][H-2OI + k11.2 ,1 [CH 4 ][OH-] -. k112 )[CH.3j~HH2 0] -

'(1ý.) .[CHfl] [Q] A MJ)['~ 0 .4.10i

The differetitial equation for [C'H.0] is

d [CH -2O] = [j-f -CH j4 [Q] - k(fl,,f) [C H1 20] [H I -- ;, ICHH(0 [()H j

± k1 ,f -. CIH,30]1 , [H] +± (1)f [(' 11.0 1 -[All1 1.4.11

Next we look at the differential eqiuationi for the [HC'0I rmdival.

('0O] 4 ,16. [HC'0I - [H]1 - AkI 7 [HC'() I -MII

+ ki., -[CH 2OI ['H)1 + A-,5i [C'H2 Oi. -[OH] 1.4.12,

The ordlimitry (iffti-reiitial (jiquattlol for thli [('1:10]j ra Clivi J S

d-[CH 3O0J = A7isl . ['H 3 -[0-2] - A-,!, - [C'H.3(] - [Hf] - [('H,)J 0]. Al 14.3
(It

TIli' 14th andl biat. Iifferf iitiad eliu, t ionl iiixv dyes l1rmcf ;11( V.!'! 6%..1 xnhy iiistIx(1

d.t 0 AJ - 21 -[HOj2 - A1 2 .II)IAI
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k.2.b).- [0H'12 .[M] - k(23 ,f) [H20 2 ] [OH'] + k(23 .b) [H2 01 [HO2 ] (1.4.14)

Using higher order ordinary differential equation solvers, we can in a short periodl of
time obtain rates of creation or destruction of species to machine precision. 10 or 12 decimal
places. We may if we wish attempt to model these rates locally by polynonlials ill the
logarithms of the concentrations. By restriction of the domain in concentration space this is
always possible. Over a range of temperatures and concentrations we develop a repret.oire of
approximations which in a highly accurate manner represent the actual rates over compact
subsets of the space whose points represent logarithms of concentrations.

1.5 Vector Analysis

The material derivative of a function f is defined bY

Df Of Of Ox Of Oy Of Oz W
Dt Ot Ox Ot Oy Ot a O: Ot

Thus. the material derivative is. if we define.

V = Ter +-C + C .
Ct at (1..2

given by
D 0D-' = jt- + ( Pt - r,•d() 1 ..-3-3)

wheire F is the velocity of a point in the fluid. We define tlh veloity aWs

f = ti"1 + r,• + ut- 1.5.4

Ai important identity involving the dyadic product of two vw(tor. . amI/B i.

di,(.AB) = di,( .- )B + (.-. !1(I(I)f 11.5.5,

Another imol tant qiuantity is the tensor or dynirc qualitity (j talitit. 1 ,I "ai b t I kv ai I
tlIe graldieLnt of a v%,ct(tor field given by

.ixi" ",vtor fiel, U is ne',,ssarily a ,url pli.s a itgraient given b y

L•== i4('tl() -+ cur/( i.-' (1.5.T)

This is tri, for aney C' fimi'tioz dehfined On1 ajn ojl'ii se(t In R" with v;,lm,.- in C" f,,r o,,11,11
to thr,-., or seven. and ,ani I,- s'n*(i fro'n th,' following leIumia ([19]).

Lemma 1.1 If i. L IIh.rr or qc:nrn, thrn for ,:i,,:r!/ 0p1)' .,ct 0 7 R" atnd f,,r ,.; ,i,'iteu,,,"

fiId PF i,. C ' 2. C" ) t•.,r. r •.i . ,a ore,, fr,:Id ("' I.?? .,. . J,,.f' 'picr" "4 a" "/1 that

S= fl,',,i(, '((;3) + c8 rl(cirl(--C,)) I 1.5.')
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where if n is equal to seven the curl is defined by the rule,

curl(E) =

7 D( EE+3  o) ,i+ +
i~ Lk {•i+1 ax,+3 I

10E,+6  OEi+2 +\ )+(E+.s OE1+-- -

09Xi+2  49Xi+ 6 , eXi 4  OXW51..9

where i is the unit vector in the direction of the ith coordinate axis in 7 dimen.ional .4prare
and

E+= 1.5. 0)

1.6 Energy Equations

if we suppose that the velocity of a fluid point is U in terms of its scalar comnpont'its 11.
v. and u' as in (1.5.4) then for a class of fluids we define the viscous dissipation fiuiction I,
by the rule.

4), '2_ + \o]+ +

+ ( 01 " 91 t,)2V 2( 9 1 a ,, al , \ 21Z: +Ox -3 O Y + 0: 1..1

In these terms the energy equiationr is given by (Anderson. Tamniiehill. and Plethcr 1 .
18S-1S9).

dir + r
- dii'(pri7 ) + f.F+

d,'(I. -. i, (7iL'f) 1- +

(lil( A'/d(T)) + ( ,) , + ( (.,,I 1.6.2)

XWe4 d(efine th(e 'lithalpy hi as (sc( An(lerson [1]. ' 1 SS)

I = , + L(1..3)

wheire
t= tHie internal f'i14'ri!. ineliiliiig (mintaut 11111iti at

J) = 1.14, pr'ssitr,. midl
/ til' dt'he Sty.
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To telescope the terms in the energy equation we make use of the vector identity

grad(!. ) x curl(•) • • - x curl(.) +

(B. grad)A + (A" grad)B (1.0.4)

to observe that

PV grad(-

p6t. {×x curl(v-) + 6t. grad(v)} (1.0.5)

Interchanging the dot and cross product in equation (1.6.5) we see that since for an arbitrary
vector field U

t/'-"(1i' x cuH,(6)) - i (gx 9'). -Cla-(i") = I 1

it follows that
pF -gr d pi .{ (U. yrad)(Fy)} (1.G.7)

We can then collapse terms in equation (1.6.2) by observing that the woientumin e,(qation
implies that

Ft. p(i7 . grad)iT=

-p-T
9t

+ ,f- 9rad(p) -F +11 di,4r) • 1.P.)

Thus. using equation (1.5.1) and equations (1.6.7) and (1.6.8) the energy .,ita tion (1.6.2)
may be rewritten in the form.

Dh DvP-57 = -57+

()Q:,. -4 ( , )
S- di'(Nyrud(T)) (1.6.0 !

where (010t) Q, is the internal power density distribution fi metion tinl ,P is rthe li:.,ipation
function representing the work done by the viscous forres of thj. fl'16d. r. t,,er rn-pr.s,,1ri11nt
the transfer by radiation from one part of the fluidl to another is givun I,- (Siegel and Howell
[68], page 680)

"Or Q,,, - i, 3 • .rwt(T) (I1.(.101(O\ (1o(TH

This .'imitionm may be interprete-d wi lrovidiug a raliatiojI flux ,,ross ;, infirv (l,.finziod 1,v '

16, T - I16.1

where a, is thie R .isst.l-ail n,,c all sorption 'effienilt (Siegl [6CS . 1) 504 ;md RP sewla m I)
amid wlihr,, (Siegel (68]. page 25) is the hmiisphmeri,'al total ,m11isive ,ow f "r a ll.a ,k I.rfa !i
itito Vatr'l1!lm having a vale of

ey = 5.6696 x 11- W;ttts / (,1,1/tr0 . 'A i (1.6.12)

320



Using equation (1.6.10) and equation (1.6.2) we see that

De = ( Q) Q + (a) Qo t+

(-pdiv( v-')) - di)( T-grad( T) ) + 4)16.3

where 4i is the viscous dissipation function given by equation (1.6.1)

1.7 EQUATION OF STATE

In the energy equation (1.6.13) the perfect fluid assumption (I11. p 1S9) would yield

S= cT. 1.7.1)

where c, is tile specific heat at constant volume, and if we define

cp
cp-- ,1.7.2)

where cp is the specific heat at constant pressure, then the pressimr 1). the internal energy
and the density p are related by ([1]. p 189)

h ( - 1)Pf 1.7.3)

2 SUMMARY

U,ing the d, .ition of velocity (equation 1.3.4) and the i .qlatim of st ate ( 1.7.3) we ev

that the number of equations is 5. allowing 3 equations for the three compIliclitn,. of the
momentum. and while the intial variables are p. i. t-, '. p. f. and T. we :we that since the
temperature T is related to r and since pr(-;::4luc i:; a function of p and 1. -w,..-vc thar tht :rv'

are now exactly 5 unknowns.

3 FLAME THEORY

Flaine thmeory can be 'm.idvied as a svit. of partial ,litfer,.tial etlaut t (461) in4 -
volving

e conservation of mass,

* spf','ies ,rvation. diffision. atid trans),)rt.

* roiiservatji'i of tilonme1(titllil.

* coIllf'VaItioll of emlen'... amid
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* equations of state.

We need several defintions of terms for the formulation of the equations. Trt' variabies are

t = time

T = temperature
p = density of mixture
Yk = concentration of species k
CP = specific heat of the mixture
C(pk) = specific heat of specie" k
u7 velocity of mixture
D~aj,}= (jk) entry of species diffusion tensor

V' = diffusion velocity of species k
k r-= r 57 equals the stream function

for transport down a tube
described in cylindrical coordinates. where

r = the distance from the axis of the cylinder. aiid
3t = molar rate of production of specie.- k.

Here. the specific heat of species k and the specific heat of the mixture are relarted hby [39'

Y,= 1(L) C~k- 3.0.1)

where pk. is the density of species k

3.1 Multicomponent Diffusion

One of the more recent developments are the concepts ([22]. [46]) of mole fraction (,if-
ferential pressure gradients with the idea that even as a gas is moving along a pipe or ýi jet
aircraft engine with velocity fi the species or molecular entities are diff.in.ig with inlividual
velocities Vk. as a result of weighted mole fraction pressimr gra(lietlts ,( and t(,1i1pel'atrIrv
gradients If we suppose that

p = pressure
Xk= = mole fraction of species k. andI (3.1.1
11. = inass fraction of sljcies k

then the weighted mole fraction differential pressure gra lient is ([46]) given by

(Ik = yrad(L(A. ) + (X. - I k) .yrad(p) (3.1.2)

and if we let
IT, = - molehilar wveight of spec'ies k
W - mixture average mohlecilar weight (3.1.3)
D[' = th,. s•,ries k tlwrimal difflisi(n ,'c( ,,fic'ient
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then the Dixon - Lewis species k diffusion velocity ([22], [46]) (for k running from I to N)
is given by

...... =F( WjD(k~j) - Y ( (T)) (3.1.4)

Then using equation (3.1.4) we see that the species k diffusion flux is given by

k k = -PtV1.3..

The overall gas velocity contribution of the species k flu is given by

Jk = P- 111" 3.1.G)

3.2 Conservation of Species and Energy

Using the species diffusion flux (3.1.5) and the species transport flux (3.1.6) an(l the i(lea
that if the partial derivative with respect to time of W1k is the molar rate of production of
species k' from chemical reactions that then the species conservation equation is

PThY = dht,(Jk) + div(p. -1. it) + 32

where the species diffusion flux 3k iS given by equation (3.1.5)
The chemical kinetics and species creation processes are an integral part of flanie iiro(lod1-

ing and can be used to describe soot particle nucleation and growth anid to uuderst;,nil the
type and kind of dangerous materials that can tbe formed d(iring burnling lroc'tv'sscs (Frcii-
klach and Wang, [31]): in particular we can (describe the formation of tin. PAH. pd"y'yclhi'
aromatic hydrocarbons nucleation and coagulation or growth in prciiixcl fla-ih 1 [30]. 132.
[33]. [351). Microscopic equations can account for surface growth of soot partichls: thin soot
formation mechanisms. in spite of intensive study have only recently co(ni to iw iilnt'rtoo(l.
As a conseqlience we better understand just how very (langerous to health tlhse pmrticlt,
really are.

,W\e now turn our att: tion to the development of energy flux using the coiict';)t of
enthalpy which is defineo by equation (1.6.3), the universal gas constant. Rt. and thin concept
of the partial pressure Pk of species KA aud the concept of the ,irg V ki. poM.Msses, 1 by species
k" to define the eiithalpy of specics A- and the total stress tensor .r to •,iV anI 'e'rg, flux
d-fined by

J=1

11 k D ,r +
k=1

=) z (t(7"4 ) )- A -

(p + (4- I1j 5 (3.2.2)
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Then if we define

te - rate of cheniical and radiative heat production

to be the heat produced by chemical reactions and the electromagnetic radiation power
density term while we let

NOW-- = the rate of radiative transfer of heat to the outside
at

which includes terms like the one on the right side of equation (1.6.10) describing radii raion

leaving from flames to all other parts of the reacting system. The energy equatioxi iV (iVeI1
by

a= diji7 )

+ t + OQ- (3.2.3)
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Abstract

Measurements of the integrated fluorescence yield of Rhodamine 6G (R6G) in

levitated microdroplets (4 to 16 pm diameter) display a size dependence which is

attributed to a decreased probability per excitation cycle of photochemical bleaching

as a result of cavity-enhanced spontaneous emission rates. The average number of

fluorescence photons detected per molecule in 4 pm droplets (where emission rate

enhancement has been previously demonstrated) is shown to be approximately a

factor of 2 larger than the yield measured for larger droplets where emission rate

enhancement does not occur. Within some simple approximations, these results

suggest that essentially no emission rate inhibition occurs in this system. A

mechanism based on spectral diffusion is postulated for the apparent absence of

cavity-inhibited emission and is illustrated by Monte Carlo calculations using time-

dependent lineshape functions.
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Introduction

One of the fundamental sensitivity limitations in the fluorescence detection of

single dye molecules in solutionl is the finite number of photons which can be emitted

by the molecule before irreversible photochemical bleaching occurs, or fluorescence

yield. '.ae fluorescence yield is directly proportional to the spontaneous emission

rate,2 ,3 however, in bulk solution, the emission rate of a particular molecule is

essentially fixed for a given solvent. It is now well-known that the spontaneous

emission rate of atoms or molecules can be modified (enhanced or inhibited) by

placing the emitting species in a small-volume optical enclosure.4, 5 Recently, it has

been shown that the spontaneous emission rate can be significantly enhanced in a

microdroplet environment for dye molecules 6 and chelated ions 7 through coupling of

emission into morphology dependent resonances (MDRs) of the droplet. This effect

could, in principle, increase the fluorescence yield for dye molecules thereby increasing

sensitivity. However, since the emission profile overlaps several droplet MDRs,

cavity-inhibited emission6 ,9,10,11 was also initially expected to occur; thus it was

unclear whether the combination of emission rate enhancement and inhibition would

result in a net increase in the fluorescence yield.

Here we show that a significant increase in the fluorescence yield for R6G in 4

and 5 pm diameter glycerol mikrodi'oplets relative to the photon yield for larger

droplets (> 10 Vm diameter). These results indicate that the combined effects of

emission rate enhancement and inhibition do not cancel completely. Using the

previously measured emission rate constants,6 the relative fraction of molecules

whose emissicn rate is inhibited is estimated to be very nea zero, We propose a

model based on spectral diffusion 12 in which the transition frequency is not fixed but

undergoes random shifts13 as it is perturbed by the motion of the solvent in response

to the change in the dipole moment of the chromophore upon excitation. On roughly

the same time-scale as the (free-space) radiative lifetime, the width of a spectral line

becomes dynamically broadened which allows the excited state to sample a

progressively larger range of frequencies which eventually encompasses at least one

droplet MDR.

Fermi's golden rule, ,4 given in Eq. (1), provides a basic understanding of how

emission rates may be modified in small-volume
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optical cavities. The rate of spontaneous emission from state j to state i can be

estimated from the expression

2nr2
A._.,j = V _ I 1Hij i2 p(w) (1)

where < i I Hij I j > is the (volume-normalized) Hamiltonian matrix element

representing the atom-field interaction, and p(co) is the density of final photcn states

at the emission frequency (o. In bulk media, p(wo) is essentially a constant over a

small range of optical frequencies so the emission rate will be approximately

independent of Co. When the dimensions of the optical enclosure become comparable

to the emission wavele' "he vacuum photon state density becomes

redistributed's so that r ich larger than the free-space value when o

corresponds to a cavity reso, ... Conversely, p(co) is much smaller than the free-

space value when o3 is non-resonant. Therefore, the emission rate may be enhanced

or inhibited depending on whether the emission frequency corresponds with a cavity

resonance provided the cavity resonance spacing is much larger than the spectral

linewidth. 16

For optical transitions, this condition implies cavity dimensions on the order of

microns which can be satisfied by using micron-sized high-refractive index liquid

droplets.Cavity effects in microdroplets are well known and arise from morphology

dependent resonances (MDRs)17 of the droplet which occur at specific values of the

size-parameter, X, defined as X - 2nr / X , where r is the radius of the sphere and X is

the wavelength of light. These resonances have very high Q's (103 - 108) and

processes such as stimulated emission Is and lasingl9,20 as well as enhanced energy

transfer21 have been reported in droplets. Recently, Campillo and co-workers 7 have

"reported enhancement (and inhibition) of the spontaneous emission rate for chelated

europium ions in a stream of falling (10 pm diam.) ethanol droplets and demonstrated

the unique frequency dependence of the enhanced emission.
In our previous investigation of the temporal distribution of fluorescence

emission from R6G in levitated microdroplets,' the fluorescence decay kinetics

observed for larger droplets (Ž> 10 pm diam.) were found to be essentially the same as
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in bulk solution. For smaller droplets (4 - 8 gim diam.) however, the fluorescence

decay showed two distinct decay components: a slow component with essentially the

same time constant as the bulk, and a second much faster decay component whose

relative amplitude and decay constant increased with decreasing droplet size. The

increase in the decay constant of the fast component with decreasing droplet size was

consistent with the expectation that the enhancement should be proportional to the

free spectral range. 14 Analysis of these results showed that a 12-fold increase in the

spontaneous emission rate constant occurs for R6G in 4 pm diameter glycerol

droplets over the decay constant measured in bulk solution.

Because the emission profile overlaps several droplet resonances, it was

initially expected that an inhibited rate component should also occur due to emission

at frequencies between the cavity resonances, However no inhibited emission was

observed, and it was originally assumed that the absence of an inhibited rate

component was due to experimental parameters in the time-correlated photon

counting apparatus which emphasized the short-time behavior of the fluorescence

emission. We have further investigated the question of cavity-inhibited emission of

dye molecules in liquid microdroplets by examining the integrated fluorescence yield

as a function of droplet size. Since the number of fluorescence photons emitted per

molecule should be proportional to the rate constant for spontaneous emission

averaged over all molecules in the droplet, the fluorescence yield should be sensitive to

the relative fraction of molecules with enhanced and inhibited emission rates as well

as the magnitude of emission rate enhancement and inhibition. For droplet diameters

between 7 and 16 gim, the average fluorescence yield was observed to be independent

of droplet size, while approximately a two-fold increase in the fluorescence yield was

measured for 4 gm diameter droplets relative to the larger sizes. These results

suggest that the combined effects of enhanced and inhibited emission rates do not

cancel completely and further suggest that the fraction of molecules with an inhibited

emission rate is very small,

Experimental

The experimental apparatus is similar to that previously describedl except

that a second photomultiplier has been added to increase sensitivity. Briefly, a three-

electrode structure similar to that emplcyed in ion-trap mass Spectrometers is used
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to levitate glycerol droplets. 22 Two f1/ collection optics view the droplet at +/- 135o

with respect to the direction of propagation of the (cw) Ar+ excitation laser. The laser

was horizontally polarized, with an intensity at the droplet of about 500 W/cm2. A

nominal total measurement time of 200 seconds was used to accurately determine

the mean background level. R6G concentrations in glycerol ranged from 1 to 4 x 10-9

M, corresponding to about 100 molecules in the smallest droplets and a few thousand

molecules in the largest ones.

Droplets were produced from a piezoelectric pipet 23 with a 40 Am diameter

orifice. Control over the droplet diameter was obtained by diluting the R6G/glycerol

solutions with varying amounts of water. Droplets leave the pipet with approximately

the same diameter as that of the pipet orifice and, after rapid evaporation of the
water, a glycerol droplet is left whose volume is roughly proportional to the degree of

dilution. Droplet diameters were determined with an estimated uncertainty of- 10 7t

by measuring the distance between reflected and refracted glare-spots2 4 from laser

illumination using an eyepi-ce reticle with rulings corresponding to 1 pm. At the end

of a fluorescence measurement, the mean background is subtracted from the data

set and the integrated fluorescence signal is normalized by dividing by the number of

molecules in the droplet calculated from the concentration and droplet diameter. This

normalized signal represents the average number of fluorescence photons emitted per

molecule which we term the fluorescence yield.

Results and Discussion

Figure 1 shows the fluorescence count rate at both detectors versus time for a

10 am glycerol droplet containing - 1000 R6G molecules. The total number of

fluorescence photons after background subtraction for this droplet was 5.5 x 10".

giving a fluorescence yield of 5500 photons/molecule. Figure 2 shows the average

fluorescence yield a. a function of droplet diameter. About 10 droplets of a given size

were analyzed and the error bars represent +/- 1 a. For droplet diameters between

7 and 20 Am, the average fluorescence yield is 4800 photons/molecule and is

independent of diameter. At droplet diameters of 5 and 4 pml, average fluorescence

yields were determined to be 8900 and 10500 photons per molecule, respectively.

Even though the relative uncertainty for the smaller droplets is larger due to the
higher relative error in the diameter measurement, the increase in the average

fluorescence yield of about a factor of 2 is clearly significant.
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Figure 1. Typical two-channel fluorescence data for R6G (concentration was 3.16 x
109 M) in a 10 ýam glycerol droplet. The integrated signal is 5.5 x 106 cftuts.
Dividing by the number (if molecules in the droplev- 10l00) gives a fluorescence yield
of 5500 photons/molecule.
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Figure 2. Average fluoresqcence yield vs. droplet size. Symbols represent an average
yield from several droplets of the same size. Error bars are +/- I (I.
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An estimate of the relative amplitude of cavity-inhibited spontaneous emission

can be obtained by relating the observed increase in fluorescence yield for R6G in 4

gm droplets to the emission rate averaged over all molecules in the droplet. As shown

by Hirshfeld,3 the integrated fluorescence yield, (P, is proportional to the ratio As~pkpb

where Ap is the spontaneous emission rate and kpb is the photobleaching rate.

Assuming that kpb is unaffected by changes in photon state density (i.e., due only to

the local solvent-chromophore enNironment), we can write an approximate expression

for 4D in terms of the inhibited and ernhanced emission rate constants, Ai and A,, and

their respective fractions fi and fe as

() = ( )bulk[ (Ai/Ab)1 . (Ae/Ab)fe + fb] (2)

where 4Pbulk represents the averagt flu,,-s-ccnce yield in the bulk (droplet diameters >

10 gim), and A b and fb represent the bulk emission rate constant and the respective

fraction. The quantity inside the square brackets in Eqn. 2 thus represents the

average emission rate (relative to the bulk) over all molecules in the droplet.

If photon emission occurs with roughly equal probability over the free-spectral

range (but with different time dependence), it is easily shown that the quantity inside

the square brackets in Eq. 2 is equal to 1. That is, the enhancement and inhibition

effects exactly cancel and no net increase in the photon yield can occur. The value of

4) for 4 prm droplets can also be estimated in the other limit where the inhibited

fraction, fi, is equal to zero. The decay constants Ae and Ab are known from our

fluorescence lifetime measurements, and the fraction of molecules in the droplet

which interact with the droplet MDRs can be estimated from the ratio of mode-

volume to droplet volume. 19 ,2 5 For a 4 pm diameter glycerol droplet, this ratio is

approximately 8%, so that fe = 0.08. Substituting a value of 12 for (A,/Ab), 6 the

fluorescence yield in the limit where fi = 0 should be 1.9 times larger than the bulk.

The agreement of the measured average fluorescence yield (for R6G in 4 jm

droplets) with the latter limit suggests that the fraction of molecules with an inhibited

emission rate is very small. Thus, there must be some mechanism by which the

excited state can sample a frequency range large enough to couple emission into the
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droplet resonances.

Pecently, solvent-chromophore dynamics in liquids have been probed by

sevei different experimental techniques. 12,26,27,28,29 Using time-resolved

fluorescence depolarization measurements, Stein and Fayer12 have shown that the

perturbation of the excited state dipole by the solvent results in a dynamical

broadening of a spectral line on the same time scale as the radiative lifetime of the

chromophore. These authors make the distinction between the fast (fs) thermal

motions of the solvent, which give rise to the pure homogeneous dephasing, and the

much slower (ns) response of the solvent to the change in the dipole moment of the

chromophore upon excitation. The latter process gives rise to spectral diffusion which

causes dynamical (time-dependent) broadening of the spectrum. Similar behavior

has been also observed in the solid state at cryogenic temperatures by Moerner and

co-workers3 O where perturbations due to conforniational changes in the host crystal

produce center frequency shifts in the fluorescence excitation spectra of sinig'e guest

molecules.

In the picture describcd by Stein and Fayer, the spectral linewidth in solution is

not fixed, but changes with time. Following an excitation pulse at time near t = 0, the

linewidth is the homogeneous width that arises from (femtosecund) collisional

dephasing due to thermal motion of the solvent molecules. As t --* -, !he

chromophore has sampled the entire range of solvent-dipole configurations and the

transition can occur at essentially any frequency with some probability give by the

inhom.ogeneous profile. The rate at which the width of a dynamically broadened line

changes depends on how fast the solvent molecules can respond to the change in the

dipole moment of the chromophore after excitation. From Stein and Fayer's value for

the solvent relaxation rate for glycerol at room temperature, the dynamic width is

estimated to reach 1/2 of the inhomogeneous width (- 600 cm- 1) in a time of roughly

1 fluorescence lifetime (3.6 ns). Thus, the excited state can eventually sample a large

enough frequency range to access a cavity resonance irrespective of the initial

transition frequency.

These dynamical solvent-chromophore interactions should strongly affect the

distribution of emission frequencies and emission times for dye molecules in a liquid

microcavity. Consider a transition which has a (nonresonant) center frequency, ui), in
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the midpoint between two cavity resonance frequencies. At time t=O following

excitation, the density of photon states in the range of frequencies within the

homogeneous width is small thereby inhibiting emission of a photon. As the spectral

line becomes dynamically broadened, there is a significant probability that the

emission can occur at a new frequency, wc', near a cavity resonance frequency where

the photon state density is much higher. This would result in virtually all photon

emission to occur near the cavity resonance frequencies provided that the spectral

diffusion is sufficiently rapid. Thus, in this scenario, very few photons would be

emitted at non-resonant frequencies and thus at an inhibited rate.

In order to illustrate this effect, Monte Carlo calculations were performed to

model the distribution of emission times and frequencies in a system where the

transition frequency is allowed to randomize on the same time scale as the radiative

lifetime. A dynamic width function was approximated 3 ' using Stein and Fayer's

experimental measurement of the solvent relaxation rate for glycerol at room

temperature which defines the spectral width as a function of time. The initial

(homogeneous) width was taken to be 100 cm- 1 fwhm, and the inhomogeneous width

at t = - was taken to be 600 cm -1 fwhm.12 A "clock" was incremented in 20

picosecond steps, and after each time step a decision was made whether to end the

calculation based on a comparison of the integrated emission probability to a random

number.

In the Wigner - Weisskopf approximation,32 the probability of photon emission

has a time dependence given by

Perjt(ko,t) = 1 - exp[ -A(o) t] (3)

where we have incorporated a frequency dependence in the decay constant, 71),

expressed as

PhaI((J)) 4

where pca(a) and Pbulk(O)) are the cavity and bulk density-of-states functions
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respectively, and yo is the decay consant in bulk glycerol (0.27 ns-1).

The approximate photon stat, lut -;ity function for the cavity was constructed

by assuming a cavity Q of 103 and a Lorentzian form for the resonance and a

resonance spacing of 700 cm-i; values which should be realistic for a 4 4m glycerol

droplet.33 We further assumed that, over the frequency range of interest, Pbulk(WO)

constant. These functions for the cavity and bulk medium were then constrained so

that

f.,, Pcav(•°) do= • Pbulk(w) d) (5)

where Ac is the free spectral range.

In calculating the emission probability, the argument, "/w, in Eqn. 3 was taken

to be an average over the homogeneous lineshape function, L(o), (o,, expressed as

2 it [(co- c) 2 + (F/2)y] (6)

where (oc is the center transition frequency, and r is the homogeneous width. The

ratio, Pcav(Wc)I Pbulk'(0c) in Eqn. 4 was then replaced by an average value

< Pcav(O)c)>/Pbulk((oc) given by

(pc.(,p ,( ) I.(W.o)) dto (7)

Phulk(cO) f) Pulki o)) L(o). )o do)

The integrated emission probability was computed at each time step using Eqns. 3

and 7 and compared to a random number generated at the start of the calculation. If

the random number is larger, a new center frequency, (o,', is randomly selected from

the time-dependent lineshape function whose width is determined by the dynamic

width function using standard Monte Carlo sampling techniques.3- This "diffusion" in

frequency space is then continued until the integrated emission probability becomes
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greater than the random number and a record is made of the frequency and the time

at which the emission occurred.

To illustrate the effect of spectral diffusion in a microcavity environment, two
different spectral origins (center frequencies) were chosen. In the first (resonant)

case, the origin was chosen to correspond to a cavity resonance, and in the second
(non-resonant) case, the origin was located in between two resonances. Figure 3

shows the distribution of emission times for both resonant and non-resonant center
frequencies. In both cases, the emission time distribution is described well by single

exponential decay with time constants significantly smaller than the bulk decay

constant. As expected, the decay constant for the non-resonant case (y = 0.87 ns-1i

is slightly smaller than for the resonant case (y = 1.05 ns-1). Because the transition

frequency is not fixed, the result of spectral diffusion in a microcavity is that virtually

all emission is coupled out through the resonances.

"-S - (a) resonant

0. - - (b) non-resonant

....... (c) bulk

0.6.

0.- 0.4 "-.

-• 0• ......... . . . . . .

-.a. -0..2.-.

0

0 1 2 3 4 5 6
time (ns)

Figure 3. Monte Carlo simulation of emission time distributions for resonant (a).
and non-resonavt (b) cenher frequencies. A step size of 20 picoseconds was used with
20000 samples and a homogeneous linewidth of 100 cm- 1. Curves are single-
exponential fits to the calculated emission time histograms, with decay constants of
1.03 and 0.85 ns-1 for the resonant and non-resonant cases respectively. The
dashed curve (c) shows the "bulk" emission time distribution for comparison.
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This is further illustrated by the simulated distribution of emission frequencies

shown in Figure 4. For both resonant and non-resonant cases, the emission

frequency distribution maps the caviy resonances with virtually no probability of

emission in the 'inhibited' region between the resonances. Similar emission frequency

distributions have also been observed experimentally in Fabry-Perot microcavities by

Yokoyania and coworkers. 35 Dispersed emission from these structures clearly

mapped the cavity resonances and shows very little (if any) emission intensity at

non-resonant frequencies

(a) resonant

.... (b) non-resonant

.IL

C.

-600 -,,,)0 -200 0 200 4 0 0 600

relat ve frequency (cm I)

Figure 4. Simulated emission frequency distributions for resonant (at. and non-
resonant [b) center frequencies Both distributions have been norm-.,'ed to give unit
area. The origin of the time-dependent transition frequency distr.bution was set to
zero for both cases. Note that for both (a) and (b,, there is negligible probability of
photon emission in between the c'avity resonances.

The purpose of these calculations was to qualitatively illustrate the effect of

solvent-chromophore dynamics on the emission properties of dye molecules in liquid

microcavities. We believe that these simulations, in which the transition frequency is
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not constrained to be fixed, demonstrate the effect of spectral diffusion in a

microcavity environment. Elimination of emission rate inhibition through spectral

diffusion is consistent with both the absence of an inhibited component in the

previously measured fluorescence decay kinetics and the increased fluorescence yield

in the 4 and 5 ptm droplets reported here. If one assumes that the fraction of

molecules whose emission is inhibited is small compared to the enhanced fraction (an

assumption which appears justified on the basis of our model calculations), Eq. 2

predicts that the increase in fluorescence yield should be approximately a factor of 2

which is in good agreement with the experimental results. It therefore seems likely

that spectral diffusion strongly influences the distribution of emission frequencies so

that emission preferentially occurs near cavity resonances.

If the inhibited emission rate component in our system is truly eliminated

through spectral diffusion, it seems important to account for the observation of

inhibited emission of chelated europium ions reported by Campillo, et al. 7 In the case

of chelated europium species the observed d -- f transitions involve electrons which

are shielded from solvent perturbations. That is, in a case where there is very little

inhomogeneous broadening, spectral diffusion cannot occur thus "fixing" the

transition frequency. In such a case it seems likely that inhibited emission can occur.

In addition, the requirement for elimination of cavity-inhibited emission through

spectral diffusion is that the solvent reorganization occur on the same time scale as

the excited state lifetime. If the solvent response time is much longer than the free-

space radiative lifetime (i.e., in a glass or solid matrix), it then seems likely that. in

such a casc, the distribution of emissiou times will show an inhibited component.

Summary and Conclusions

Measurements of R6G fluorescence yields in microdroplets have revealed a

size dependence which is attributed to a net decrease in the probability per

absorption-emission cycle of photochemical bleaching. This effect derives from an

increase in the average spontaneous emission rate as a result of coupling of emission

into droplet MDRs. A two-fold increase in the average number of fluorescence

photons detected per molecule has been observed for R6G in 4 Pim droplets ovqr the

yield measured at larger diameters which is interpreted in terms of a net increase in

the ave, " e spontaneous emission rate. These results are consistent with previously
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measured R6G fluorescence decay kinetics in microdroplets and suggest that the

relative amplitude of cavity-inhibited emission in this system is very small. We have

proposed a mechanism based on randomization of transition frequencies on a time-

scale comparable to the excited state lifetime, illustrated by simple Monte Carlo

calculations, which can account for the virtual elimination of cavity-inhibited

emission in this system. It is also clear from these results that cavity-QED effects

associated with microdroplets offer a substantial sensitivity advantage for

fluorescence detection of single molecules.
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Scattering in Medicine and Biology", 192-201, (1993).

Abstract:

Micron-sized droplets of saturated sodium chloride solution
were captured in an electrodynamic levitator. Both pure droplets
and droplets with one-half micron sub-particles ('guests') were
studied by means of 90 degree polarized light scattering and
fluorescence. Large fluctuations appear when guest particles are
present. In order to eliminate confusion of the fluctuations with
morphological resonances, host droplets were brought to
thermodynamic equilibrium with a moist atmosphere and maintained
at constant diameter for several days. Analysis of the correlation
function for the intensity of the scattered light showed decay times
of - 9 msec which have a good correspondence with the physical
parameters of the solution and the size of the subparticles. Longer
characteristic times are measures of morphological features of the
electric field intensity in the host particles. A new phenomenon
was observed when the exit polarizer was crossed to the input
polarization. Scattered light corresponding to light from the guest
particles was visualized mainly from a shell near the exterior of the
sphere and not from the interior of the host dronlet.
" This talk was presented at the 1992 Scientific Conference on Obscuration and

Aerosol Research but was not included in that years proceedings.
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Introduction:

Since the development of the quadrupole levitation balance, (1-3)
studies of the spectroscopic characteristics of levitated micron-sized
droplets have become an active field of investigation. In the recent past
IR, fluorescence, and Raman spectroscopies (4-8) have been
demonstrated. Of particular interest are the morphological resonances for
electromagnetic (laser) excitation, which allow highly efficient transfer
of energy between molecules in microdroplets seperated by distances far
larger than those characteristic for Foerster transfer( 9). The variety of
experiments using these electrodynamically isolated micron-sized
droplets suggests that applications not possible in other microanalytical
systems will arise for this "world's smallest test-tube". In one recent
example, the possibility of using a sufficiently small droplet consisting
of a non-fluorescent solvent as host with one or a few fluorescent
molecules present was shown to allow sufficient sensitivity to detect the
presence of a single molecule of rhodamine (10). Up to now, many studies
have concentrated on pure droplets, but it is expected that composite
particles are not unusual in naturally occurring aerosols. Composite
particles are also of interest with respect to the problem of detection
and identification of unknown particles captured from an aerosol. For
example, a method has been devised to reproducibly add measured
picoliter amounts of a known liquid in to an unknown particle captured in
an electromagnetic balance (11). By this means, various chemicals can be
added sequentially to test an unknown aerosol particle whose properties
are then analyzed by optical probing of the composite droplet consisting
of unknown particles and known liquids surrounding them. The composite
droplet would remain levitated free of substrate interference and be
available for further tests. In the present communication we discuss our
experiments showing that fluctuations in scattered light may be used to
reveal the presence of subparticle guests in a host droplet and that
analysi;b of these fluctuations can give an indication of the size of the
guests,

Methods:

Droplets with diameters in the twenty to forty micron range were
generated into a damp atmosphere with a microparticle generator
(Uniphoton, Brooklyn, N.Y.) These were captured in a hyperbolic quadrupole
balance which has been described and shown previously ( 2,4) . The trap
is contained in a sealed chamber with a resevoir attached so that the
droplet may be brought into equilibrium with a damp atmosphere making
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maintainence of droplets of saturated salt solution at constant diameter
for periods of several days routine. Laser light polarized in the
scattering plane is directed toward the particle through a port in the
chamber. Scattered or fluorescent light is measured at 90 degrees
through a 1/16 inch "pinhole" to reduce background and is quantitated by
photon counting. The exit polarizer is mounted in a rotating frame so
that it can easily be switched between alignments either in the scattering
plane (par) or perpendicular (perp) to the scattering plane. The signal
from a Hamamatsu R928P phototube is transmitted with amplification to
a Stanford Research Systems SR-400 photon counter and thence to a PC
for analysis. The guest particles were 0.46 micron fluoresbrite spheres
(Polysciences, Warrington, PA, catalog #18720) at a 1/40 dilution from a
2.5% solids suspension into room temperature saturated salt water. This
gives a suspension of about 1.2 x lOE10 guest particles/ml as was
verified by microscope counting. After one day in the working suspension,
80 to 90% of the particles were still singles. This concentration
corresponds to an average of 168 particles in a 30 micron droplet. The
diameter of the particle was estimated to within 10% by the geometrical
model of the distance between glare spots (12). Changes in mass were
monitored to -0.1% by following the DC balancing voltage. Laser light of
633 nm wavelength is used for all the scattering experiments except as
noted in Figure 1. 514 nm laser light is used for exciting fluorescence. A
bandpass filter (560 nm, half-width 10 nm) and a long pass filter
transmitting less than 0.1% b-low 530nm and 90% above 580 nm were
used to monitor fluorescence.

Results and Discussion:

In Figure 1 photon counts are plotted as a function of time for two
different experiments with saturated salt water droplets of
approximately the same size ( -25 microns). The droplets are very slowly
evaporating. The upper graph is for a neat droplet. The lower graph is for
a droplet with guest particles. The usual resonance structure is seen in
both graphs, but the presence of guests produces large random
fluctuations on top of the intrinsic structure. From these graphs it is
clear that the presence of resonances may interfere with analysis of the
fluctuations. In Figure 2 photon counts are shown vs time for a neat salt
water droplet coming to equilibrium. Some remaining Mie-like structure
is seen in the first part of the graph, but after 1500 seconds, the droplet
is virtually constant in size. Small size changes did occur (-2 %)
overnight due to temperature changes in the laboratory, but the droplet
again came to apparent equilibrium after a couple hours at constant
temperature. The fluctuations remaining in the graph after equilibrium is
reached are random noise probably from the laser source. For the
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Figure 1 Ninety degree scattering from slowly evaporating

levitated microdroplets with no subparticles (upper graph) or with

subparticle inclusions (lower graph).
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Figure 2 Ninety degree scattering from a neat microdroplet as it

comes to thermal equilibrium with a moist atmosphere.
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remainder of the experiments, care was taken to have the droplet in this
quasi-equilibrium condition.

In Figure 3 the profile of fluorescence counts/sec vs time is shown
over a period of several minutes. There is a break in the graph at a time
when the phototube was removed to check that the droplet was still well
centered. Fluorescence counts drop off rather rapidly as the dye in the
guest particles is photoconverted to a non-fluorescing species. Since the
host droplet remains at a constant size, we hypothesize that the large
upward fluctuation in photon counts occur when guest particles wander
into "hot" spots of electromagnetic intensity.

2,!

I

I ..

S W am0 .;0 W' 2,800~O 000, ' -00 *W 8000

Figure 3 Fluorescent counts from dyed fluoresbrite guest particles
contained in levitated nonfluorescent host droplet.

It is interesting to pause to consider a consequence of the breaking of
the symmetry of a neat host droplet by the guests contained in it. In
Figure 4, the upper sketch shows the path of light scattered by a
homogeneous sphere. The laser is to the left. The polarization state is
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described by the following matrix equation.

S FS2 S X
LyS LS4 S1] rEJ

(1)

where the input polarization vector on the right side of the equation is
transformed into the output vector on the left by the scattering matrix,
S. Suppose we look at the scattered component perpendicular to the
scattering plane.

Eys - S 4 Exi + S1 Eyi

Now invert all the physical components of photons and the scattering
sphere in the XZ plane. Then we have

-Eys M S4 Exi- S', Eyi

but S' = S by the invariance of a homogeneous sphere, hence

S' 4 3S4 = 0. S' 3 is similarly zero so the par and perp components of a

scattered photon do not mix on scattering from a homogeneous sphere.

Next we consider the same homogeneous on an element by element
basis. The lower figure uses geometric optics to show the refraction of
light at the sphere's surface to scatter from two small symmetrically
placed subspheres selected from the homogeneous substance of the
droplet. The incoming light is polarized perp to the scattering plane in the
example shown. After refraction followed by scattering from the two
elements chosen we see that the perp components reinforce, whereas the
cross-polarized par components cancel in phase. From the earlier
symmetry argument there must be a combination of one or more elements
canceling the cross-polarized component for every subsphere of a
homogeneous sphere.
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However, consider the case where one of the subspheres shown is a
guest particle or other inhomogeneity with different pelarizability from
the host droplet. Then the cancellation of cross-polarized components no
longer works and we should get cross-polarized output.

Figure 5 is a sketch showing what one sees when looking through a
microscope at 90 degrees to the input laser light which is located to the
viewers left.

Figure 5 Left --view thru microscope at 90 degrees to input
light with no guests or with guests and no cross polarizer.
Right--view with guests present through cross polarizer. Laser
is to the viewers left (image shown inverted so brighter spot is
physically away from laser).

The view on the left shows the familiar glare spots with the brighter
spot away from the laser. This is what one sees with or without guests
when the output polarizer is in the plane for input polarization in the
scattering plane. When guests are present and the output polarizer is
crossed to the input one sees a "ring of fireflies" flashing on and off
mostly near the periphery of the sphere. The majority of the fireflies
were seen near the top of the particle. This is consistent with the
equilibrium position of the guests which are 1.7 times as likely to be near
the top than near the bottom of the droplet if one calculates the
probability using the gravitational potential (density of the guests,1.05,
saturated salt water, density, 1.20). The fact that the visible flashes
correspond with the gravitational position of the guests suggests that the
flashes correspond to the location of the guests rather than an
:ntcrference phenomenon far from the source.

In Figure 6 we show the photon counts for 90 degree scattering
obtained from a 30 micron droplet containing fluoresbrite guests. The
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two graphs were taken during consecutive interve-Is. As noted in Figure 1
for an evaporating droplet with no exit polarizer present, the fluctuations
are considerably larger when guest particles are present in the droplet.
The coeficient of variation (C.V.) of the fluctuations is - 8 percent for
the exit polarizer in plane and -28% for the exit polarizer perpendicular to
the input parallel polarization. This is to be compared with Figure 2 (exit
polarizer perpendicular) the C. V. was only -0.6%.

107  May 1992, FLBR-H

Sh13 in plane
* hl3crosspolr

0.-A

;10

10

10 4 1

0 TIME (sec) 100

Figure 8 90 degree scattering of 633 nm laser light
(polarization in plane) for a 30 micron droplet containing 0.46
micron guest particles. The exit polarizer is parallel (upper) or
perpendicular (lower) to the scattering plane.

In Figure 7 we plot the relative correlation function which we define

as <(N(t)-Nav) (N(t+ t) - Nav)>/<(N-Nav)2 > where the bra kets denote a

time average as does the subscript "av", and N(t) is the photon count
during the interval near t. The theoretical model for photon correlation
spectroscopy in a cuvette is well established (eg. reference 13), but the
present situation of correlations in a droplet is rather more complicated.
To take one example we note that for the cuvette, the propagation vector
of the incoming light is easily established by the laser, whereas in the
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present case, the input direction is affected by the geometry of the
chamber (droplet), particularly near the surface of the droplet.
Nevertheless we use the standard theory for the present analysis.

If we take the decay as exp(-T/ti) with Ti a characteristic time, then in

Figure 7 we have T1, the shortest characteristic time equal to - 13 msec

If we take ", - 2q 2 D where D is the diffusion constant for 1/2 micron

spheres in saturated salt solution, and q - 4A/, with lamda equal to 633

/1.04 nm and D = KT/671a with the viscosity of saturated salt water

31 MICRON DROPLET WITH GUESTS

Mh16 corr-EXIT IN PLANE

=• hlScorr-EXIT POL XED

z

o

. .. . . . . . .

0m
UD

0.00 TIME (SECONDS) 0.05

Figure 7. Relative correlation function for an a 31 micron
droplet with 0.46 micron guests.

equal to 2.04 cp we may solve for the radius of the guest particles. We
obtain a value of about 57 microns for the radius of the guest particles.
This is more than twice the nominal radius for single particles. The
difference may be due to an increased tendency for guest particles to form
multiples when confined inside the host droplet.
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In addition to the short characteristic times, we found exponential
decay of the relative correlation also occurs on a much longer time scale,
up to hundreds of milliseconds and sometimes even as long as several
seconds for the same guest particles in the same experiments. An
attractive hypothesis is that some of the longer characteristic times may
correspond to diffusion of guest particles into and out of small regions of
relatively high intensity for the electromagnetic field inside the droplet.

The phenomenon of the "ring of fireflies" is rather intriguiing. First
we note that aside from interactions with the gravitational and electric
field we would expect the guests to be rather evenly distrubuted
throughout the host particle since any charge on them is effectively
screened by the many ions present. We have noted that calculation of the
probable vertical location accords with the visual evidence indicating that
the flashes of light correspond to the location of guest particles relative
to the host rather than being an interference phenomenon distant from its
source. It has been shown (14) that for droplets with large size
parameter the distribution of high intensity regions is not dependent on
the exact drop size when the droplet is off resonance for the wavelength
used. In this case, there is a concentration of intensity in the border
between the "shadow" region and the illuminated region as defined by the
geometrical optics model for a plane wave intercepting the sphere
The present host sphere (-30 microns--size parameter '148) is large
enough that the distribution shown in reference
(14) should still approximate the present case. Whenever a guest comes
into these regions of high energy concentration, additional scattering
events and occasional depolarization occurs. The location of these regions
of high probability of scattering near the spheres surface accounts
qualitatively for the appearance of the "ring of fireflies" The visibility of
the ring in cross polarization is, we believe due to a great reduction in
intensity of the glare spots which are due to the host particle.

In a perfect sphere, the initial polarization of the scattered light
would be completely preserved. In the present case, the presence of a
guest of different dielectric polarizability from the host which is not
counterbalanced by a similar subsphere in a symmetrical position is not
prevented from contributing scattered photons which are depolarized. A
clue to the origin of these photons comes from a recent article which
shows a concentration for the probability of photons in the region between
the shadow and the illuminated region resulting from a plane wave

The initial results of photon correlation spectroscopy inside micron-
sized droplets shown in the present report indicates that the properties
of host and guest both affect the results. While this complicates
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interpretation, it also opens a window for studying internal dynamics of
composite particles analogous to the present case.

S. Arnold was supported in part in this research by National Science Foundation Grant, NSF
ATM-89-175871. We thank Dr. Stephen Druger, Northwestern University, for the proper
references •15,16) for the physical properties of saturated sodium chloride solution.
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ABSTRACT

A collection of microdroplets may be regarded as an ensemble of semiclassical gas particles.
If such a system is inelastically scattered by light, it is the incoherent scattering which
mast be considered. The scattering cross section can be computed if the relaxation
function is determined. We present the relaxation function for an ensemble of semiclassical
parnicles as a function of the incident wavevector. The same formalism will be applied to
study the dynamic behavior of inhomogeneous as well as isotropic systems appropriate to
inicrodroplets and aerosols.

INTRODUCTION

If a particle with mass m is inelastically scattered, it can recoil. It can also suffer an
internal excitation if it has a structure. Having been so excited, how does it relax
thereafter? It is an interesting question which probes the nature of the particle's
"memory." To provide an answer by first-principles calculations is difficult since it
involves solving the Heisenberg equation of motion among others. During the 1980's, this
kind of physical problem has received considerable attention. Emphasis, however, has been
on the coherent scattering in quantum and classical fluids, and magnetic solids. The most
successful approach has been that of the memory function in the framework of the
generalized Langevin equation, itself formally equivalent to the Heisenberg equation of
motion. We shall adopt this approach to study the incoherent inelastic scattering which is
all the more difficult owing to the absence of the dispersion relation. For this purpose, we
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consider a very elementary model consisting of ideal semiclassical particles in contact with
a thermal bath set at temperature T. The principal quantity of theoretical interest is the
relaxation function from which the dynamic structure factor may be deduced. One can
compare the dynamic structure factor with scattering data. In this presentation, we show
some of our calculations for the relaxation function of a single particle as a function of the
momentum transfer. In particular, we show the different behavior in the short and long
wavelength regimes. We also show the future direction suggested by these solutions.

RELAXATION FUNCTION

Consider an ensemble of N identical particles of mass m. Let r denote the position of a
particle at time t = 0, just before scattering, and r(t) its subsequent position. Also let hk
and ?w be the momentum and energy transfers in a scattering process in the usual manner.
The relaxation function with respect to one tagged particle is then defined as:

Rk(t) = (e-ikr , eik'r(t)) (1)

where the inner product is the Kubo scalar product. The time evolution is given by

eik.r(t) = eitH/h eik'r e-itHI•h (2)

where H denotes the energy of the ensemble. Note that [H, r] - Hr - rH J 0. Hence, the
time evolution is nontrivial. The noncommutativity implies the existence of the
generalized Langevin equation. The Kubo scalar product introduces an ensemble average
which is thermal average. For simplicity, we shall assume that the averaging may be taken
with respect to the Boltzmann distribution. This combination of the noncommutativity
and the Boltzmann averaging is the meaning behind the semiclassical gas.' The position of
an individual particle, not the density of particles, ensures that we are dealing with an
incoherent process.

To connect the relaxation function to scattering, we shall rely on the standard formalism of
linear response theory.' Let z iw + c, t -, 0+. Then we can define the following:

Rk(z) - e- t Rk(t) dt = LRk(t), Re z > 0. (3)
0

Then it is established that

-7r Im [1 -z Rk(Z)]z=iw-÷ = Sk(w) (4)

where Sk(w) is the dynamic structure function which is proportional to the inelastic
scattering cross section. It is also known in the optical parlance as the extinction
coefficient, i.e., the imaginary part of the refractive index. Recall that the real and
imaginary refractive indices are connected by Kramers-Kronig relations.

We shall now obtain the relaxation function when the scattering particles suffer recoil only
which as an ensemble are thermalized according to the Boltzmann distribution. Let ?LW0 =
?,2k2/2m be the recoil energy. Then, using the commutation relation (r, P] = ih where P is
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the momentum of the tagged particle, we find that

eik'r(t) = eik'r eiat (5)

where

a = wo + k.P/m. (6)

Here the second term on the rhs of eq. (6) represents the Doppler term in the scattering
process. To obtain (5) we have used the well-known relation, viz., for any two operators A
and B, if their commutator is a c-number,

eA eB = eA+B+½[AB].

Using (5), one can put the relaxation function (1) as follows:2

Rk(t) = fXk(S) ds. (7)

t

The above integral expression can be evaluated numerically, or asymptotically exactly if k
is very small or very large.3 We shall below give our asymptotic solutions in terms of
u = wwo/kBT. In the long wavelength limit,

Rk(t) - et2/u (8)

In the short wavelength limit,

Rk(t) = ¢(u/8,½,-2t2 /u) t-u/4 (9)

where 0 denotes the Kummer function, a special limit of the hypergeometric function. In
our solutions, the time t is given in units of its natural time scale, i.e., the mean free time.

In the short wavelength limit one can obtain the dynamic structure function by eq. (4)
using our asymptotic solution for the relaxation function. We find that

Su/4 e-W2/8u
Sk(w) = 8u F(u/gF- (10) -

Observe that the scattering function (i.e., the extinction coefficient) is peaked about
w = wo. It is a smooth function of the frequency although not analytic as w -- 0. This kind
of form has been observed in very short wavelength scattering in quantum fluids.
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DISCUSSION

We have shown that even in this very elementary model, the relaxation function behaves
rather sensitively on momentum transfers. In the long wavelength limit, the system of
semiclassical particles will relax rapidly after suffering scattering. But in the short
wavelength limit, the system will relax slowly such as to develop long time tails in the
autocorrelation function. We consider this different behavior rather remarkable. The
mathematical solution cannot be demonstrated here to its full extent in this short note.

As our future direction, we shall consider the scattering when the particles suffer internal
excitation in addition to recoil treated here. The system need not be homogeneous. By
allowing different masses, we can study the size distributions. We can also allow
nonspherical particles. More difficult is to allow some sort of interaction between particles.
An interacting system implies that spatial dimensions become an important parameter.
Then one can also pursue the study of configurational asymmetry, e.g., layering structure.
We are presently studying these problems via a finite model of harmonically coupled
classical particles and also of coupled spin--like quantum particles.
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ABSTRACT

A method is described in which individual microorganisms can be detected by fluorescence
immunoassay. Polystyrene microspheres with immobilized antibodies are used for a
multicomponent assay whereby a single measurement can analyze for many different species.
Results of experiments to determine the sensitivity and specificity of the method are presented.

363



Timely identification of potential infectious agents has long been a challenge, especially for single
organisms. We have obtained some recent results that indicate that an immunoassay technique
based on spherical microparticles may permit the recognition of a large number of species of
microorganisms with a single measurement.

The methodology is as follows: antibodies for each type of microorganism to be identified will be
immobilized on microspheres of different sizes. One or more microorganisms to be identified are
stained with a fluorescent dye and incubated with a mixture of the spheres. Fluorescent detection
combined with optical determination of the diameter of the microspheres with bound
microorganisms permits sensitive detection and unambiguous identification of the microorganisms
present in the sample. Because of the precision of the laser size determination, many different
species could be tested for in a single measurement. With slight modifications, the technique can
be extended to include biomolecules such as toxins as well.

Structural resonances in the light scattering and absorption of transparent microspheres enable us to
determine their diameter to about one part in 104 (1-3). The fluorescence of species on the surface
of the spheres as well as the elastically scattered light is greatly enhanced when the wavelength of
the incident exciting light coincides with that of a structural resonance (4,5). Thus, if an exciting
laser is scanned in wavelength, a stained fluorescent microorganism bound to a sphere would
fluoresce more strongly at certain frequencies characteristic of the sphere's diameter. The size
could also be determined by measuring the light scattering as a function of wavelength. The
spheres would be initially separated optically into groups with a very narrow size range, depending
on the desired number of species to be identified. Each group would be coated with antibodies to
one of the desired species (6). The spheres would then be mixed together, suspended in buffered
solution. There will be a one-to-one correspondence between sphere resonance wavelength and
species of microorganism.

To analyze a small sample containing one or more unknown microorganisms, the sample woc!d
first be stained with a fluorescent dye. After incubation with a small batch of the mixed
microspheres, the fluorescence of the spheres would be measured. The most sensitive method
would be to measure each sphere to see whether a microorganism is attached and then to measure
the sphere diameter, hence determine the species. A more rapid method would he to measure the
excitation spectrum (scan the wavelength of the laser and measure the total fluorescence of all of
the spheres simultaneously). The magnitude of the fluorescence at a wavelength corresponding to
a structural resonance would be proportional to the number of microorganisms of that species.

While the concepts presented above, optical size measurement, resonance-enhanced fluorescence,
and bonding of microorganisms to immobilized antibodies have been studied individually, the
combination of these effects into an integrated procedure for the identification of microorganisms
has not been tested. We have made some preliminary measurements, however, that demonstrate
the concept.

We tested the above ideas with two species of bacteria, E. coli and Staph. aureus for which
antibodies were commercially available. The inert bacteria were obtained from Molecular Probes,
Inc., stained with tetramethylrhodamine and Texas Red respectively. Rabbit anti-E. coli and
monoclonal anti-Staph. aureus peptidoglycan were obtained from Biodesign International. These
antibodies were conjugated to carboxylated polystyrene spheres with carbodiimide reagent (7).
with anti-E. coli on 10-1im spheres and anti-Staph. aureus on 6.5-pm spheres. The sphere sizes
were selected so that they could be visually distinguished under the microscope. The two species
of bacteria could also be recognized by the color of fluorescence, yellow-orange and red.
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We first incubated a mixture of the dyed E. coli with spheres coated with anti-E. coli to see how
well the bacteria would bind and their detectability. The spheres and bacteria were observed under
a binocular microscope with 40X objective, loX eyepieces, modified for fluorescence
measurements as described previously (8). An argon ion laser, at 514-nm wavelength, 10 mW,
was used for fluorescence excitation. The first incubations were carried out in a 1.5 mL
microcentrifuge tube rotated end for end at 1 min-1. No binding was observed, even after several
days. However, after a two-day incubation without stirring, about 95% of the spheres had at least
one bacterium attached. In a control experiment with uncoated spheres, only a few spheres were
observed with attached bacteria. It was easy to visually discern and also to photograph single
bacteria bound to a sphere.

In a second experiment, an excess of the two species of bacteria was incubated with a mixture of
the two sizes of antibody-coated spheres. Ideally, the yellow-fluorescing E. coli should bind
selectively to the 10-gtm spheres and the red Staph. aureus to the 6.5-mrn spheres. The statistics
obtained from one slide are shown in Table I and Table II. A total of 40 10-min and 117 6.5-4rm
spheres were observed. The number and types of bacteria observed to be attached are presented in
Table I. There were 98 bound E. coli and 235 bound Staph. aureus, distributed as shown in Table
II. These results show that the attachment is indeed selective. In these experiments, no attempt
was made to reduce the degree of nonspecific binding by varying the buffer pH or ionic strength,
both of which are known to affect adsorption.
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Table I. Number of microspheres versus attached species of microorganism.

10-jim spheres 6.5-Arm spheres
anti-E. coli anti-Staph.

E. coli 33 5

Staph. aureus 2 105

both 5 7

Table II. Number of bacteria bound to microspheres of a particular size.

10-pm spheres 6.5-gm spheres
anti-E. coli anti-Staph

E. coli 85 13

Staph. 9 226
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ABSTRACT

This paper proposes a new method, circular dichroism transmissometry
(CPT), for the remote detection of biological organisms. In CPT, a
laser pulse passes down through an aerosol plume, scatters off the
ground or retroreflector, passes again through the plume, and is
detected by a polarization sensitive detector. Microorganisms cause
circular dichroism in the plume. Circular dichroism induces
circular polarization in the detected light. The shot noise in CPT
was numerically modeled. Background radiance does not contribute
shot noise because narrow band filters eliminate background
radiance. An optical artifact in CPT was studied using a table top
experimental simulation. In the future, we will find new methods of
eliminating the optical artifact, measure circular dichroism in
microorganisms, and evaluate possible field performance.

INTRODUCTION

A remote sensor of biological agents should use an optical property
that is specific to biologically derived chemicals. One property
that is specific to biologically derived molecules is
chirality.1. 2 Chirality is a type of asymmetry where a molecule Is
different from its mirror image. A molecule and its mirror image
are called enantiomers of each other. One way that biological
processes are unique is that they produce only one enantiomer of
each molecule Instead of racemic mixtures (that is, equal amounts of
both enantiomers). For example, all living things produce the amino
acid 1-tryptophan, not its enantiomer d-tryptophan. Chiral
molecules cause novel optical properties such as circular dichroism
(CD), fluorescence detected circular dichroism, optical activity,
and circularly polarized luminescence. This investigation studied
potential applications of CD in remote biological detection.

This paper describes a novel method of remote biological detection,
called circular polarization transmissometry (CPT), that uses
circular dichroism to detect microorganisms. Shot noise and the
optical artifact are the two biggest problems for CPT. The next

section describes the method of CPT. The Theory section describes
signal-to-noise ratio (SNR) calculations. The Experiment section
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describes a t&ble top experiment that partly simulates CPT and
describes the optical artifact. The discussion section makes a
preliminary evaluation.

CIRCULAR POLARIZATION TRANSMISSOMETRY

Figure 1 shows a schematic of circular polarization transmissometry.
The user places the remote sensor on some high point locking down at
the scene of interest. The lidar operator aims the laser bpam at
the aerosol plume, which may contain bio)ogical agents. The ground
or a building behind the plume is also in the path of the laser
beam. The laser beam passes through the aerosol plume and reflects
from the ground. Part of the reflection is diffuse (that is, in all
directions) reflection. Part of this diffuse reflected light passes
through the aerosol plume again and a mirror collects it. This
sensor return has a nonzero circular polarization, if and only if
the aerosol plume has CD at the wavelength of the laser. A
polarization modulator interrogates the sensor return. This
polarization modulator could be a rotating quarter wave plate for a
pulsed laser or a photoelastic modulator for a continuous wave
source. The detector measures the left-hand and right-hand
components of the sensor return.

A nonzero circular polarization indicates an organism or biochemical
substance in the path of the laser beam. The sensor return comes
from the backscatter from the ground because the ground backscatter
is stronger than the direct elastic scatter from an aerosol.

Ambient light, such as daylight, does not affect CPT for two
reasons. First, the laser line is spectrally narrow compared to
ambient light. Narrow band filters can filter out ambient light.
Second, one can restrict measurements to the solar blind part of the
ultraviolet system. The Insensitivity to ambient light may be an
important advantage of CPT over fluorescence lidar.

The previously described method is single ended because ir uses the
diffuse ground scatter. Collecting ground scatter is inefficient
because diffuse &cattering spreads in all directions. A double
ended CPT method would have a far greater sensitivity and range.
One can place retroreflectors in an area to reflect the laser beam
back to the sensor with very little loss. The SNR using
retroreflectors would be much larger than the calculated values
shown later. However, this study focussed on the single ended
method beca,',"e the user may not have control over the entire area.
Retrorefle s would only be practical under some conditions.
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SINULATION

Photon counting (that is, shot noise) will be the largest source of
random noise for CPT. This sectior shows the results of a numerical
calculation of the SNR. We adapted lidar equations, including the
UVTRAN model, 3 to CPT. A future publication will show the equations
in detail.

The calculations shown used a quantity proportional to the
dissymmetry ratio, g, the concentration, c, and the path length, L.
Tis quantity is called the GCL and is defined as:

L

kd82f[gPodx (I)
0

where kd is the GCL, the total path length is L, the number density
of particles is p, the mean absorption cross section of each
particle is o0, and g is the dissymmetric ratio.

The simulation used the following parameters. Recently published
measurements of bacterial spore parameters4 show that the
absorption cross section, ao, for a wet Bacillus megaterium spore is
6 x 10-9 cm2 at a 280 nm wavelength. Bacillus megaterium is a
harmless bacteria that simulates biological agents in some studies.
The dissymmetry ratio, g, was 0.5%. The source energy (that is,
time integrated power from the laser) was 900 J. The shot noise
comes only from the laser background because solar radiation cannot
affect CPT.

Figure 2 shows the functional dependence of SNR to distance for four
GCL. The four GCL are 3.4 x 10-3, 1.9 x 10-3, 1.1 x 10-3, and 6.0 x
10-. These GCL, in a uniform plume 1 km thick, are equivalent to
number densities of 567, 317, 183, and 100 spores/cc. One sees from
figure 2 that the maximum range of detection at these values of GCL
is greater than 3 km.

EXPZRIMENTAL SIMULATION

We did a table top experiment to simulate CPT. The purpose of the
experiment was to study how the optical artifact (that is, unwanted
birefringence) could bias a CPT measurement.
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Figure 3 shows a schematic of the experimental apparatus used to
simulate CPT. The scatter plate, Melles-Griote opalized glass,
represented the ground. A lens (LI), collected the diffuse scatter
at 0' because the small dimensions of the table did not allow
convenient collection at 180*. The collected light passed through
another lens (L2), a polarizer (P1), a sample holder that contained
a removable cuvette, a photoelastic modulator (Hinds PEM-80),
another polarizer (P2), a filter holder, a collecting lens (L3), a
monochromator, and a photomultiplier.

The samples consisted of saturated solutions of camphoroquinone (R,
S, and racemic) with a 16% transmittance. We used a laser
wavelength of 496.7 im.

The distance between the ground and the CPT system will vary.
Therefore, polarization signal, proportional to IL - IR, was measured
as a function of distance between the scatter plate and Ll. The
small dimensions of the experiment did not allow far field
conditions, so the intensity did not have an inverse square
dependence as in a real lidar. However, the purpose of the
experiment was to study the optical artifact.

The signal strength as a function of distance is shown in figure 4
for camphorquinone (R, S, and racemic). Note that we did this
experiment under ambient light. The figure shows negative signal of
R and the positive signal for S because the signals would be equal
in magnitude opposite in sign for the ideal case. Figure 4 shows
that the signal for the racemic mixture is much weaker than the
other two signals as expected.

The measurements show anomalies at the largest distances (>30 cm).
The racemic mixture shows a nonzero signal. Furthermore, the
signals for the R and S are not equal in amplitude.

Further studies, not yet published, show that the optical artifact
causes these anomalies. A linearly polarized background with an
unwanted birefringence in the optical elements causes the optical
artifact.",6 TI"he unwanted birefringence turns linearly polarized
light into circularly polarized light, creating a false signal. The
strength of the linearly polarized background changed with distance.

The optical artifact will be an interferant in real CPT measurements
because unwanted birefringence are always in optical elements.
However, we have found several ways to reduce the optical artifact.
The investigator tried subtracting the artifact using a known
reference. The reference method reduced the optical artifact by a
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large amount. The reference method in the field would consist of
monitoring the linear polarization and using an artifact
calibration curve. A depolarized laser also will reduce or
eliminate the artifact.

"CONCLUSIONS

Circularly polarized transmissometry (CPT) has been proposed as a
new method of remote biodetection. The insensitivity of CPT to
ambient light is an advantage of CPT over fluorescence lidar.
However, shot noise and the optical artifact can severely limit CPT.

Shot noise, a fundamental limitation, limits sensitivity and range
but can be averaged away. The optical artifact creates false
signals. The optical artifact is an instrumental problem that comes
from inherent birefringence. Several methods reduce the optical
artifact. We will further study the practicality of CPT.
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ABSTRACT

Nonracemic mixtures of chiral molecules are almost unique to living
things and cause optical activiy. Optical activity induces circular
polarization in light scattered from particles. Therefore, optical
activity may provide new methods of biodetection. This paper
dicusses Mie scattering calculations applied to hypothetical
suspensions of optically active spheres that represent micro-
organisms in different applications. Some applications use solar
radiation. In the future, we will do more complete simulations of
remote sensing using circularly polarized scattering.

INTRODUCTION

New methods of detecting microorganisms would be useful in both army
and civilian applications. The threat of airborne biological
weapons creates an army need for early warning detection systems.
Both remote and point biosensing systems would be useful to the army
for detecting biological threats. Biodetectors also would have
peacetime applications. For example, a remote biodetector could
sense microorganisms in places that are hard to reach such as in the
ocean, high in the atmosphere, or even other planets.

Previous researchers have attempted to identify biological aerosols
frou the depolarization of elastically scattered, linearly polarized
laser pulses.1 These researchers measured the linear polarization
of the elastic scatter from the aerosol plume. Both nonspherical
and optically active particles depolarize linearly polarized
light.2, 3  However, depolarization of linearly polarized light is
not specific to taicroorganisms because both multiple scattering and
the shape of the particle greatly affect linear depolarization.
Therefore, we studied the circular polarization induced by an
aerosol particle rather than the depolarization of linearly
polarized light.

One property that is specific to biologically derived molecules is
chirality." 5 Chirality is a type of asymmetry where a molecule is
different from its mirror image. In nature, only living things
produce nonracemic mixtures of chiral molecules. Nonracemic mix-
tures are materials with an excess of one type of molecule over its
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mirror image. Nonracemic mixtures cause optical activity (OA) and
other effects. This paper shows how OA could be used for remote
biological detection.

Optical activity is a condition where there is a difference between
the refractive indices of the two types of circularly polarized
light (that is, left- and right-hand polarization). Unpolarized and
linearly polarized light are composed of left- and right-hand
components of equal intensity. If a particle is optically active,
the difference in the refractive index creates a difference in
scattering properties. By preferring one scattering one component,
the scattering process from optically active particles will often
induce a circular polarization. There are no natural sources of
circularly polarized light on earth. Therefore, biosensors using
circularly polarized elastic scattering can potentially detect
microorganisms that are optically active.

We propose some methods of using circularly polarized elastic
scattering to detect microorganisms. The theory section describes
Mie scattering as applied to optically active spheres. The methods
section describes two proposed methods using elastic scattering for
detecting microorganisms- -remote sensing and point sensing. The
results and discussion section describes some numerical simulations
of induced circular polarization.

THEORY

This section describes the theory of scattering from individual
particles and the scattering from aerosol plumes.

This study uses the approximation that microorganisms are spherical
and homogeneous. Mie scattering theory is a well-known method of
calculating elastic scattering values from spheres.6,"

A generalized Mie-scattering code 8s 9 was modified and used to
calculate the scattering from an optically active sphere. In this
preliminary study, we used a solution based on an approximation by
Gordon that involves wave decomposition. 1 0 The calculations shown
later ignore interference between the two circularly polarized
components. Ignoring interference means that the total intensity is
equal to the sum of the intensities of the two circularly polarized
components. Although the codes can calculate interference, this
paper ignores interference effects because most polarization
measurements use dichroic filters. Polarization measurements using
dichroic filters eliminate interference effects.
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The codes require as input complex indices of refraction (relative
to surrounding medium) for both circularly polarized components, the
size parameter of the sphere, and the scattering angle. The size
parameter is x times ratio of sphere diameter to wavelength. For
this paper, the electric field of the incident light is in the
scattering plane. The scattering codes used the following defini-
tion of circular polarization, Pc:

PC = IL (i)
Pc-IL ÷ It

where IL is the intensity of left-hand polarized light and IR is the
intensity of right-hand polarized light.

The code generates a list of intensities and polarizations for
different size parameters. Another code calculated an average
circular polarization weighted over total intensity and the
probability distribution of size parameters. We assumed a lognormal
probability size distribution for the microorganisms.

METHODS

This section describes three possible scenarios for using circularly
polarized elastic scattering: (1) scattering from an aerosol plume
in the atmosphere, (2) scattering from particles in a water-filled
cuvette, and (3) backscattering from particles in a large body of
water.

Consider the following scenario shown in figure 1. The sun shines
overhead on an aerosol plume containing microorganisms. The sun
provides strong light in the visible region. A vehicle on the
ground a safe distance away collects scattered light. Note that the
scattering angle is arbitrary. The circular polarization of the
scattered light indicates microorganisms. This system is entirely
passive and covert. In this case, the concentration of micro-
organisms will be small, although the path length in the sample may
be large.

One could use a laser as a light source instead of the sun. This
lidar system would not be sensitive to sky radiance because a narrow
band filter would subtract the background. However, this lidar
would be an active sensor.
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Consider a point sensor where a sample of aerosols is dispersed in
water as shown in figure 2. A laser beam enters the cuvette.
Particles scatter the light at right angles. Optically active
particles induce a circular polarization in the scattered light.

The induced circular polarization is much stronger if the particles
are immersed than if the particles are in air. The microorganism is
mostly water itself so a larger fraction of light is scattered from
chiral molecules. The water acts as an index matching fluid. By
matching the index of refraction, the total scattered intensity
(that is, the denominator of equation 1) decreases, and the circular
polarization increases. Adding the correct solutes to change the
liquid's index of refraction can make scattering from nonchiral
molecules nearly disappear. The microorganisms can be concentrated
in the fluid, However, the cuvette severely limits the path length.

The third scenario concerns a study of microorganisms in a body of
water, such as the ocean. Consider a detector looking at back-
scatter from particles in the water as shown in figure 3. The water
provides an index matching liquid, the microorganism density could
be very high, and the path lengths in water near 488 nm are reason-
able (>30 m). One could probe deeper under water and obtain ranging
information by using a laser instead of the sun (that is, use a
lidar). Narrow band filters would eliminate ambient light in this
lidar (that is, active sensor) case.

RESULTS AND DISCUSSION

In this section, we calculate induced circular pola%:izaticns under
reasonable conditions for all three scenarios at 488 nn. Argon-ion
lasers have a strong line, the sunlight is strong, and the trans-
mission through water is relatively high. Therefore, the scattering
wavelength is 488 nm for this study. The index of refraction of
water is 1.33. We assume that the index of refraction of the
microorganisms is 1.4 and the absorption of the microorganism is
zero. The dissymmetry of the index of refraction (that is, optical
activity) is assumed to be 0.005. The diameters of the micro-
organisms are assumed to have a lognormal distribution with a mean
of 2.0 pm and a standard deviation of 0.2 um. For these calcula-
tions the angle of scattering was assumed to be 900 for the first
two cases and 1800 for the third case.

The program averaged polarizations over many radii. The size
parameter increment was 0.01 pm. Figure 4 shows polarization and
probability distribution as a function of size parameter for the
water-filled cuvette (90*) case. The probability distribution is
not drawn to scale. This situation has the strongest circular
polarization of the three scenarios.
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The averago polarizations, ignoring the sign, are as follows. The
scattered light from the aerosol plume had an average polarization
of 0.019. This polarization is small but measurable. The water-
filled cuvette had a 0.58 polarization. The large polarization
suggests that the optical activity point sensor may be very effec-
tive. The marine backscatter had an average polarization of 0.215.
Scattering from nonbiological particles will greatly reduce the
induced polarization, but the calculation still suggests potential
applications. Passive remote biodetection of microorganisms in the
water may be possible by the proposed method. Other researchers are
exploring circularly polarized scattering for remote biodetection in
marine envirornents. 11.12

Induced circular polarization does not require the exact conditions
simulated in this paper. Further calculations, not shown in this
paper, indicate that the circular polarization does not disappear
even for wide probability distributions. Induced circular polari-
zation may exist even for nonspherical, optically active particles.
Note the large polarization enhanceirent, from 0.019 to 0.58, caused
by an index matching fluid for the right-angle cases. An index
matching fluid would increase circular polarization under most
conditions.

Active remote biosensors using lasers would not have problems with
sky radiance because a narrow band filter can isolate the laser
line. The passive remote biosensor using sunlight would have a
large problem with background sky radiance. }owever, noise from sky
radiance may be reduced by signal averaging methods. Passive remote
biosensors may be practical for some applications.

This study is very preliminary and only suggests potential uses of
optical activity for biodetection. In the future, we intend to
calculate signal-to-noise ratios, maximum ranges, and sensitivities
by using more precise parameters from realistic scenarios. Circular
polarization of elastically scattered light may pruvide valuable
methods of biodetection on land, at sea, and in the air.
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Figure 1. Polarized scattering from an aerosol plume in the
atmosphere.
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Figure 2. Polarized scattering in a cuvette from an index matched
sample. PEM Is a photoelastic modulator, P is a
polarizer, L is a lens, M is a monochromator, and D is a
detector.
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Figure 3. Polarized scattering from particles in a body of water.
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Figure 4. Polarization and probability distribution as functions of
size parameter for 90* scattering in water.
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ABSTRACT

The development of simple and efficient trial fields for a Schwinger-type
variational principle for diverse scattering problems has been one of our long-
term objectives. Previously devised trial fields that are capable of both satisfying
boundary conditions and imitating shadowing effects have proven quite effective
for TM polarization. Specifically, comparisons with the exact solutions available
for canonical shapes show that such trial fields can yield excellent accuracy for
all frequencies/scatterer sizes and all scattering directions.

For TE polarization, such trial fields lead to noticeable inaccuracies in the
resonance region for scattering into the backward half-space. As is well known
for a smooth sc-+' . there are pronounced oscillations present in the resonance
region caused by. rence between a specularly-reflected wave and creeping
waves that circle Unef Atterer's shadowed side and are shed back in the direction
of the reflected wave. Guided by this insight, we have earlier conjectured that the
discrepancies in the TE variational results are due to the lack of proper creeping-
wave effects in the trial fields.
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In this paper, we provide an explicit verification of this conjecture for a
simple test problem of plane-wave scattering from an infinite cylinder with (TE)
Neumann's boundary condition. Namely, we demonstrate that when a creeping-
wave contribution, as available from the exact solution, is incorporated into the
variationally-derived backscattering amplitude, good accuracy results for all size
parameters. The accuracy of this hybrid (variational/exact) solution gradually
deteriorates as the scattering angle deviates from the backscattering direction
because both its components (i.e., variational and creeping-wave) become
increasingly inaccurate for these scattering angles. Using physical insights
gained from the hybrid solution as guidance, we are presently developing simple
and efficient means for incorporating approximate creeping-wave effects directly
into thc trial fields to obtain more accurate, consistently-variational solutions.

INTRODUCTION

This work is a continuation of our ongoing effort [1-111 to develop simple

and efficient trial functions that, in conjunction with Schwinger-type variational

principle [12], yield all-frequency accuracy in variational solutions for

electromagnetic and acoustic scattering problems. It has been shown earlier [6-

11] that, for transverse-magnetic (TM) polarization and acoustically-soft

scatterers with Dirichlet's boundary condition (BC), trial fields that are capable of

both satisfying BCs and imitating shadowing effects are very effective 41, p.ov1ding

accurate variational results. Specifically, comparisons with exact sollicions

available for canonical shapes [13,14] demonstrate that these so-called shadowed

boundary-Born trial fields yield excellent accuracy for all frequencies/scatterer

sizes and all scattering directions for impenetrable [6-10] as well as pcnetrable

(with impedance BCs [11]) scatterers.

Such trial fields also provide reasonable broadband accuracy in variational

solutions for transverse-electric (TE) polarization and acoustically-hard scatterers

with Neumann's BC. However, for scattering into the backward half-space, they

lead to noticeable inaccuracies in the resonance region, i.e., for size parameters

1 < ka < 20, where a is the scatterer characteristic size, and k - 21r /A is the

wavenumber, with A being the wavelength of incident radiation. In this region,

the exact solutions [13,14] exhibit pronounced oscillations that are due [14-16] to
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the interference between a direct reflection from the illuminated side of a

scatterer and creeping waves that are launched at a shadow boundary, traverse

the shadowed side of tho scatterer, and are shed in the direction of the specular

reflection. Guided by this physical insight, we have made [7,11] a conjecture that

the shortcomings of our variational results for TE scattering are due to the lack of

proper creeping-wave effects in the shadowed boundary-Born trial fields.

In this paper we explicitly verify this conjectun, for a simple test problem of

plane-wave scattering from an infinite cylinder with Neumann's BC. Specifically,

we demonstrate numerically that incorporating creeping-wave contributions, as

available from the exact solutions [13,14], into the variationally-derived

backscattering amplitude leads to a hybrid (variational/exact) solution that is

accurate for all size parameters. Intuitively appealing explanations based on

decomposition of the exact scattering amplitude into optics and creeping-wave

contributions, and direct comparison of the variational and optics constituents of

the hybrid solution, allow one to readily understand why the hybrid result is so

effective for TE backscatter. Good results were also obtained using this procedure

for a range of scattering angles around the backscatter. However, as the

scattering angle deviates further and further from the backscattering direction,

the accuracy of the hybrid solution gradually deteriorates, until at some angle it

becomes contaminated with spurious spikes and/or wiggles. Both the variational

and the creeping-wave components of the hybrid solution become increasingly

inaccurate for such scattering directions, although for different ranges of size

parameter: the former for larger and the latter for smaller ka's.

With this added knowledge and further insight into the physics of the

problem, the next logical step is to incorporate a simple but efficient

approximation for creeping-wave effects directly into the trial fields in order to
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obtain accurate, consistently-variational solutions for TE scattering. This is the

problem we are still working on, and the results will be reported elsewhere.

It has been noted that unlike the TE case, the creeping-wave contributions

[13,14] to TM scattering are numerically insignificant and physically not essential

[15,16], as is apparent from the absence of any pronounced oscillatory structure in

the exact backscatter. Thus, as should be clear from the above, the shadowed

boundary-Born trial fields already contain the essential physical effects required

for effective variational approximation of TM scattering from smooth shapes.

Since details of our variational solutions for TM scattering from impenetrable and

penetrable cylinders were published earlier [6,11], and a more thorough exposition

will be published elsewhere [7], here we concentrate on plane-wave scattering

from an infinite cylinder with Neumann's BC.

Before proceeding with the problem, we would like to point out that our

interest in scattering from canonical separable shapes [13,14] is motivated by the

availability of manageable exact solutions against which our variational results

can be tested analytically and/or numerically for all size parameters, scattering

directions, and polarizations. The approach itself of developing mathematically

simple and physically plausible trial fields [17] by incorporating the essential

physics inherent in scattering processes [1-11,18] is a generic one and is not

limited to particular scattering problems.

SCHWINGER-TYPE VARIATIONAL PRINCIPLE
FOR SCATTERING AMPLIrUDE

Scattering of a plane wave by an infinitely-long perfectly-conducting

cylinder of radius a, whose axis is along the z direction, is depicted in Fig. 1,

where k,,ks are the incident and scattered propagation vectors, respectively, and

0s is the scattering angle. The usual polar coordinates p,0 are used to specify an

arbitrary point in a plane normal to the cylinder axis. Only normal plane-wave
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incidence is considered because, for the case of perfect conductor, a general three-

dimensional (3-D) problem of oblique incidence can be reduced to tWo scalar (i.e.,

TM and TE) 2-D scattering problems [13]. This has the additional advantagc that

physical mechanisms can be evolved wi hout the e:xtra complication brought in by

three dimensions. Also, without loss of generality, the incident plane wave

propagating in the x direction is assumed to be of unit (dimensionless) amplitude,

and the harmonic time dependence e-°t is suppressed everywhere.

For TE polarization, the (total) magnetic field is parallel to the cylinder axis,

i.e., in the z direction, depends on ý and ii, and has its normal derivative

vanishing on the surface (Neumann's BC) of a perfectly-conducting cylinder.

Introducing Vf a V(ý, ki) = H2(P,/•i), the Schwinger-type variational principle [12]

for the scattering amplitude for the problem under consideration can be derived in

a straightforward manner and written down in the standard form

TV = NN//D (la)

in terms of line integrals along the cylinder circumference

N = iaf 2x ddV (a, 0) d e-ikpcos(O-_s) (1b)

40 pp =a~ia •2Od _ P "

o =_0o doV(a,O,)•,ei os a (13)
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The tilded quantities, R and f, represent the adjoint solution, i.e., the solution of

the reciprocal problem in which the source and observer are interchanged, so that

the reciprocity relation [12,17] is satisfied due to the form of Eq. (la). Thus, the

adjoint field 1 = v(-ký) follows directly from the original field ' = v'(Ti) by

substitution 0 -+ 0 - 03 - x. This relation holds for the exact fields V and i, and

we will impose it on the trial field so that our variational solution will satisfy

reciprocity. Also, H01(), the Hankel function of first kind and zeroth order,

represents (up to a constant factor) a two-dimensional free-space Green's function

appropriate for this problem. Using Grafs addition theorem [19], the double

integral in Eq. (1d) can be reduced to a product of single integra; ;.

With the correct fields V1, ], each of the integrals N, N, and D, as well as

their ratio Eq. (la), will yield the coTrect scattering amplitude T. Then, the

normalized differential cross section follows immediately

[IT12 /(ka)2  , forward (0s = 0), (2a)

IITI2(4/ nka) , otherwise (0s * 0). (2b)

ormalization is chosen (as for TM case [6,11]) such that a - 1 for forward-

ana oack-scattering when ka -4 -. On the other hand, when a trial field

containing some error is used for Vi (and i), the variational-approximate TV

given by Eq. (la) will have errors of the second and higher order. The first order

errors in TV cancel out due to its inherent stationary property [12], and this is

potentially advantageous when compared to other, non-variational approximate

techniques.
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DEVELOPMENT AND TESTS OF TRIAL FIELDS

In developing trial fields for this problem we followed our trial-field design

procedure [1,2,6,7,11], which is based on physical insight. Namely, starting with

the simple Born approximation, i.e., just the incident plane wave, we augment it

by the same expression, but evaluated on the scatterer surface and premultiplied

by a simple factor, so that the resulting boundary-Born trial function is capable of

satisfying the pertinent BC. To provide for shadowing, which is important for

moderate and large size parameters, this trial function is premultiplied by a

simple, shadow-imitating function. The following shadowed boundary-Born trial

field

t(p, ) [1-P(ka,cose][eikpcos0 - f (p)cosp eika cos4P] (3)

is capable of satisfying Neumann's BC, i.e. V'i(a) dV/t /p a 0, provided

f'(a) = ik. This approximate field Vt is only used in thb. irnmediate neighborhood

of the cylinder. When this trial field is substituted into Eqs. (1), a variational

parameter f(a) resulting from f(p) is obtained, with its "optimal" value found

from the stationary condition TV/df = 0. Also. it turns out that imposing

reciprocity yields f = f and , = N.

For TM scattering, the shadow-regulating parameter P3 in Eq. (3) was

adjusted so that the correct large ka-iimit of TV(Oq = 0) was obtained [6,7,9,11],

i.e.,

TV( 4s = 0) k4 T(Os = 0), (4)

with the limiting value of TV derived by employing the asymptotic techniqaes

considered in Refs. 20,21.
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Unfortunately, as our asymptotic analysis shows, in the case of TE

scattering there is no single vclue of P in the simple shadowing function of Eq. (3),

tbat would provide both the correct large ka-limit for the forward scattering

amplitude as in Fq. (4) and a physically-reasonable 13(0 < 8 S_ 1) to imitate

shadowing effects. In view of this, we just set / = 1 so that at the central point of

the illuminated region (0 = ir) the shadowing factor is two, while at the opposite

point in the shadowed region (0 = 0) the shadowing factor is zero. According to

the physics of wave scattering [12], shadowing is not present for small size

parameters because diffraction causes the entire scatterer to be illuminated.

Thus, we set /3 0 for, say, ka 5 0.7 by introducing a simple ramp function:

'O, ka <_ 0.7,

13(ka) = {(ka -0.7)/(1.0 -0.7). 0.7 < ka < 1.0, (5)

Ii, k: Ž_ 1.0.

With such a ramp function the shadowed trial field in Eq. (3) goes over to the

original boundary-Born field for small ka's, which yields exceptionally good

results in this ka-region for botih TM and TE polarizations.

For TM scattering [6-11], incorporating the simple shadowing into the

boundary-Born trial fields nct only corrected the large ka-limit of the variational

results for forward direction, but also effectively suppressed spurious spikes

and/or wiggles for all scattering directions, thereby providing very good accuracy

for all size parameters. This is illustrated by Fig. 2 reproduced from Ref. 6.

For TE scattering, due to the above-mentioned lack of physically appropriate

/3 to do this dual job, only for a range of angles (1200 < 0. <_ 180') around the

backscatter does the simple shadowing effectively suppress spurious spikes

and/or wiggles. The unshadowed boundary-Born variational result for

backscatter (derived earlier in Ref. 1) is very accurate for small .'a's, but is heavi)v
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contaminated with spurious spikes for moderate and large size parameters, as

shown in Fig. 3a. The simple shadowing with 13 defined in Eq. (5) eliminates the

spurious spikes (see Fig. 3b), so that the variational backscatter is now quite

accurate for both small (ka < 0.7) and large (ka 2_ 20) size parameters. However,

in between, i.e., in the transition region of moderate ka's the shadowed boundary-

Born trial field leads to noticeable inaccuracies. This is the resonance region

where the exact solution attains a peak near ka = 0.8, and then oscillates about the

geometric optics value of a = 1 with damped, regularly spaced excursions of

notable amplitude that becomes smaller as the cylinder becomes larger. It is well-

known [14-16] that these oscillations are due to the interference between the

specularly-reflected and creeping-wave contributions to the exact backscatt -. To

gain a better insight into the physics of this phenomenon, as well as to be able to

ascertain explicit implications for improving our trial field, we turn now to a

more careful analysis of the exact backscatter solution.

OPTICS AND CREEPING-WAVE CONTRIBUTIONS

TO THE EXACT SOLUTION

Applying a sophisticated asymptotic analysis, the exact scattering

amplitude for 901 < 08 <- 180' and values of ka sufficiently large (depending on 0s)

can be decomposed as [13-15]

T = TOM- + TCreep", (6a)

where TOpt. and TCreeP. are the optical and creeping-wave contributions,

respectively (see Fig. 4a). For the exact TE backscatter, a development useful

numerically for ka > 2 is explicitly given by (13,14]

[ ill 353 +O(a_] 6b
T It 1 vra-expUi(r / 4 -2ka)] 1---ll- 35 + 0 (kaf3  (6b)2 L 16ka 512(ka) 2

and

395



TCreeP" = 1.531915-hr(ka) 1/3 exi-2.20(ka)113 - 0.3957635(ka)-1 ! 3 + ...]
(6c)

x exp{i[f/3+ +,-&e+ 1.2701695(ka)"/ 3 -O.2284945(ka)-l 3 +...I1.

It should be noted that the first term in the optical contribution is the standard

geometric optics result. One can readily appreciate the accuracy of the creeping-

wave approximation represented by Eqs. (6) through inspection of Fig. 4b, where

curves of backscattering cross section for the optics and creeping-wave

contributions, as well as for the combined optics and creeping-wave contribution,

generated by substituting Eqs. (6) into Eq. (2b) are plotted along with the exact

solution.

The geometrical optics contribution to the backscattering amplitude is

depicted in Fig. 4a as a specularly-reflected ray. The physical interpretation of the

origin of the far-field creeping-wave contribution in Eq. (6c) is that the incident

rays at their points of tangency to the cylinder (see Fig. 4a, where only one such

ray is shown) launch cre.3ping waves emanating from these points. These waves

travel along the surface with phase velocity slightly smaller than in free space.

As they travel along the surface, they shed radiation along tangential directions,

and thus become exponentially damped.

Using heuristic arguments gleaned from the literature, it is possible to

qualitatively explain the exponential decay of creeping wave amplitude. Let us

consider wave diffraction on a convex polygonal cylinder, first concentrating just

on two of its edges. As the wave is scattered on the first edge, its amplitude is

decreased. Then a diffracted ray skimming along the cylinder's flat surface

impinges on the second edge, and is again diffracted, traveling along a geodesic

according to generalized Fermat's principle. Now let us consider m edges. If 0 is
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an overall angle that the wave circumnavigating the scatterer had traversed, then

for an elemental angle 0 / m the wave's amplitude A is decreased by y (0 / m)A,

where yis a proportionality coefficient. To the next edge the wave amves with the

amplitude A (1- m 4,/ i), after which the amplitude becomes A (1- y4,/ M) 2 , and

after traveling over m edges it becomes A (1-7y, / m)m. In the limit m - c, we

obtain the exponential decay, A exp(-yo), since it is well-known that

lim (1+ 1/x)x = e = 2.718.... Note that this decay is due entirely to shedding of

radiation, as there is no absorption for a perfectly conducting scatterer. Then,

according to the classical theory of radiation, the amplitude of the wave shed off the

scatterer is proportional to -(d /dO)A exp(--y4) = Ay exp(-y4).

Let us now find an approximation for the dominant functional form of the

phase of a creeping wave at an angular distance 4 from the point of launching

(injection). We note that in a cylindrical coordinate system traveling wave

solutions vary as exp(iv'O) = exp(ik's), where v' is the azimuthal index, and k' is

the propagation constant along the surface. Since the arc length s = ao, this gives

v = k'a, and the creeping-wave phase factor becomes exp(ik'a4), with k'> k because

the -!reeping-wave velocity along the surface is slightly bmaller than that in free

space. As a first order approximation we set k'= k, which leads to exp(ika0).

Thus, a creeping wave traveling along the surface of a scatterer can be

represented by the generic form Aexp(i vr), where v = V + i v", with V - ka and

v" = Y. When this wave is shed off the scatterer at an angle 4 from the launch

point, its form becomes -Ay exp(ivO). It can be shown that the decay coefficient

y- (ka)1/ 3 . For a creeping wave shed off in the backward direction 0 = ir, so that

we get Ao(ka) 1/ 3 exp[irka-y 0o(ka) 1/ 3], which correctly reproduces the dominant

ka dependence of both the amplitude and phase in Eq. (6c). Specific values of

constants Ao and yo are determined by the geometry and BC of a particular
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scatterer, and for canonical shapes they have been derived from rigorous

solutions using pertinent asymptotic methods [13,14].

The oscillatory nature of the cylinder backscatter is due to the interference

between a specularly-reflected wave and a creeping wave that circles the rear of

the cylinder and is shed backwards, as is shown in Fig. 4a. To the extent that the

creeping wave travels along the surface at the free space velocity, it traverses an

additional path length equal to the cylinder diameter plus half the circumference,

or a total additional path of (2 + 4)a. The damped interference pattern, thereforr,

should have peak-to-peak spacings in ka that occur when the path length

difference is a wavelength, or for Aka = 21r/(2+xr) - 1.22, which is in close

agreement with the actual average spacing in Fig. 3. Because the creeping wave

loses energy in proportion to the distance traveled along the cylinder, it becomes

weaker as the cylinder becomes larger. Consequently, the interference pattern

becomes weaker as the electrical size of the cylinder, i.e., its size parameter ka,

increases. Therefore, the creeping-wave contributions are numerically

insignificant for ka >> 1. Also, the higher-order creeping waves which made one

or more additional complete circumnavigations in clockwise and counterclock-

wise directions around the cylinder are of little value, and were not included in

Eq. (6c).

We note in passing (13,14] that, in the corresponding expression for

creeping waves with TM polarization, the numerical coefficient (-2.20) in the

exponent of the dominant damping factor in Eq. (6c) would be replaced by

(-, -6.06), and the overall constant factor of (-1.53) by (-0.91), among other minor

changes. Consequently, the creeping-wave contributions are numerically

insignificant for TM polarization, and produce no appreciable oscillatory

structure in the backscatter, only a slight wavering (see Fig. 2).
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HYBRID (VARIATIONAI'EXACT) SOLUTION

In order to obtain guidance from the above analysis for our objective of

improving the TE variational solution in the resonance region, we plotted in Fig.

5a the shadowed boundary-Born result TV (already shown in Fig. 3b vs. the exact

backscatter) together with the optics contribution 7r)Pt. from Eq. (6b). An

inspection of Fig. 5a reveals that the two curves are in reasonable overall

agreement for 1 < ka < 10, and practically coincide for ka > 10. (Even better

agreement has been found between the phases of the complex amplitudes TV and

TOPM..) Because the variational and optics solutions are in good agreement, one

can expect that by augmenting the variational backscatter with the creeping-wave

contribution from Eq. (6c), a much better accuracy will result in the resonance

region.

It is gratifying to see this expectation amply fulfilled, as Fig. 5b attests.,

where the hybrid solution obtained by substituting [cf. Eq. (6a)]

THYbrid = TV + 7Creep. (7)

into Eq. (2b) is compared to the exact backscatter. Not only a remarkable

improvement is achieved for ka ý 2, i.e., for the domain where Eqs. (6) hold true,

but also the agreement is quite good for 0.7 :5 ka !5 2.0, where the creeping-wave

theory is not supposed to be efficient (see Fig. 4b). This somewhat unexpected

improvement is, in part, a result of our use of the same ramp function as in Eq. (5)

to premultiply TCreep. (which is quite reasonable), but is mostly due to the fact that

our variational solution TV is more accurate than the optics contribution TOMP in

Eq. (6b) for 0.7 < ka 15 2 (cf. Figs. 3b and 4b). And since TV itself is very accurate

for ka < 0.7 and ka >> 1, good all-frequency accuracy is achieved with this hybrid

solution for TE backscatter
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Good results have also been obtained with the hybrid solution for those

scattering directions, 1200 : Os ! 1800, where the variational component TV in Eq.

(7) is not contaminated by spurious spikes or wiggles, although the accuracy is not

as good as for the backscatter for 0.7 < ka < 7 because the creeping-wave

contribution [13,14] to Eq. (7) becomes gradually less and less accurate for

scattering angles deviating further and further from the backscattering direction.

For these scattering angles, the accuracy of TV alone (i.e., without TCreeP.)

gradually extends to larger ka's, reproducing quite faithfully the first few

oscillations, which the representation in Eq. (6a) fails to do. However, beyond this

range of scattering angles, TV becomes quickly contaminated by spurious spikes

and/or wiggles, and the hybrid solution completely fails. To remedy such a

situation, a better designed trial field is needed, with capability of imitating

creeping-wave effects by simple but efficient means akin to those that have been

devised to satisfy the boundary condition and shadowing requirements.

Investigations in this direction are underway.

SUMMARY AND CONCLUSIONS

The main thrust of this work has been to explicitly verify our earlier

conjecture (7,11] based on physical insight that, for TE scattering, creeping waves

constitute an essential physical ingredient missing in the shadowed boundary-

Born trial fields, as manifested by noticeable inaccuracies in the resonance

region. Specifically, we have demonstrated for a simple test problem of plane-

wave scattering from an infinite cylinder with Neumann's BC that incorporating

the creeping-wave contribution available from the exact solution into the

variationally-derived backscattering amplitude yields good accuracy for all size

parameters.
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In the process of devising this hybrid (variational/exact) solution, physical

insights into tne creeping-wave phenomena have been provided, and dominant

features of a generic creeping wave have been deduced using arguments of a

heuristic nature. Intuitively appealing explanations have also been given

concerning the effectiveness of the hybrid solution in the entire resonance region

and beyond. Additionally, it has been observed that, for TM scattering, the

shadowed boundary-Born trial fields lead to very accurate variational results

because creeping-wave effects are numerically insignificant in this case.

We expect the hybrid solution to be as effective for scattering from other

impenetrable smooth shapes with Neumann's BC, as well as for TE scattering

from penetrable scatterers with impedance BCs. Indeed, similar gratifying

results have recently been obtained by D. E. Fround for plane-wave scattering from

an acoustically-hard sphere using this procedure.

Practical applicability of the hybrid approach is, however, limited to those

few problems for which accurate and numerically efficient expressions for

creeping-wave contributions are available. Moreover, the hybrid solution cannot

provide uniformly accurate results for all scattering directions since its

variational and creeping-wave components become increasingly inaccurate for

scattering angles further and further away from the backscattering direction.

Therefore, guided by knowledge and insights gained from the experience with the

hybrid solutions, we are presently trying to derive more accurate, consistently-

variational solutions by developing more efficient trial fields. These trial fields

will directly accommodate creeping-wave effects through a simple, approximate

means similar to those used to satisfy BCs and to imitate the shadowing effects.
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FIGURE 1. SCATTERING CONFIGURATION. Plane-wave
scattering by an infinite perfectly-conducting circular cylinder at normal
incidence.
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FIGURE 2. TM BACKSCATTERING. The variational cross section obtained
with the shadowed boundary-Born trial field is compared with the exact solution.
The maximum error is less than 2.5% and occurs at ka - 1.5.
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FIGURE 3. TE BACKSCATTERING. The variational solution is obtained
with the boundary-Born trial field (no shadowing) in (a), while shadowing
is included in (b).
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FIGURE 4. TE BACKSCATTERING. (a) Schematic illustrating the ray
depiction of specularly-reflected and creeping waves. (b) At large ka, the
scattering amplitude can be decomposed into optical and creeping-wave
components. The optical and creeping-wave cross sections, along with
the cross section from the sum of these two components, are presented as
a function of size parameter, ka. The failure of this decomposition at
small ka is obvious from comparison with the exact solution.
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FIGURE 5. TE BACKSCATrERING (a) Comparison of the shadowed boun-
dary-Born variational solution and the optics contribution to the exact solution.
(b) The hybrid cross section found by adding the creeeping-wave contribution
to the scattering amplitude to that obtained from the shadowed boundary-Born
variational solution is compared with the exact solution.
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ABSTRACT

The applicability of the exact solution for infinite cylinder scattering to finite cylinder
problems is investigated, by comparing the infinite cylinder theory to finite cylinder
microwave scattering data. As low as p = 2 for the aspect ratio p = length/diameter =
l/(2a) of a finite cylinder, the magnitude as well as tl"e profile of observed scattering can
be rather closely approximated by the infinite cylindei theory, if the cylinder orientation is
not far from perpendicular incidence. Pertinent formulas and expressions are !isted, along
with a brief description of a new algorithm for computing cylindrical Bessel functions (an
extension of that reported in [Ref. C)]). The appropriate multiplication factors, which
depend only on 2rca/l and/or p, are derived in order to assess the magnitudes of finite
cylinder scattering from infinite cylinder expressions. This work, which is planned to be
included in a paper for submitting to Applied Optics, represents a part of our continuing
effort to systematically catalog existing microwave data, and is also a preparatory work
aimed at developing a reliable, but easy to use, approximate solution to the scattering by
finite cylinders.

1. Introduction

Studies of scattering by a cylinder span a long time, Perhaps over a comparable or
even longer time than that for sphere/spheroid scattering Lord Rayleigh solved the

perp'endicularly-illliiniated ity?1ni!e cylinder problem as early as 1881 [Ref. 5], but it took
more than 70 years before the appearance of Wait's solution [Ref. 8] for ohlique'h'-
illwninated cylinders of still unrealistic iqiTiite length. The thcoretical evaluation of'the
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scattering quantities deals with complex functions such as cylindrical Bessel functions, and
efforts to improve on the calculation algorithms have continued [Refs. 2-4, 7].

It is well known that information on cylinder scattering is needed in a wide variety of
disciplines [Ref. 2] and, indeed, it has been one of the major topics in our microwave
experiments since the facility's inception by Greenberg in the late 1950's [e.g., see Refs. 1,
3-4, 6, 9, 12]. Comparing these microwave data for finite cylinders with infinite cylinder
theory, we have realized that the latter is more useful than previously thought. Over the
years our computational algorithm for the infinite cylinder theory has been steadily
improved to meet practical applications, and this article is a report of that progress.

Following this brief introduction, the exact infinite cylinder solution as extracted from
[Refs. 2-5, 7-8] is outlined in sec. H1, for describing: (1) geometry, formulas, symbols and
definitions employed in this article, (2) the extension of the ratio algorithm for sphere Mie
calculation [Ref. C)] to cylinder problems, (3) conversion of the cylinder-geometric-cross-
section-normalized complex extinction efficiencies (Qext, Pext) to equal-volume-sphere-
cross-section-normalized efficiencies (Q, P) for theory-experiment comparison, and (4)
formulas evaluating the scattering by a perpendicularly illuminated finite cylinder via the
infinite cylinder solution [Ref. 7]. Sec. III briefs the selected extinction and angular
scattering data [Refs. 6, 9, 12] and compares these with the infinite-cylinder theoretical
predictions. The summary conclusion is given in sec. IV.

II. The Infinite Cylinder Expressions, the Ratio Algorithm, and the Extension to
Finite Cylinders

(1) Geometry, Formulas, Symbols and Definitions

Fig. 1 shows the coordinates which are used. The cylinder has a radius a and consists
of a homogeneous material whose dielectric constant is e and whose magnetic
permeability is It. We follow the notations employed in [Refs. 2-4, 7] closely, and use a
Gaussian system of units with el'•a as the. time factor. The incident wave has a wavelength
X, and the direction of propagation makes an angle of X = 900 - cx with the cylinder axis.
In Case E the cylinder axis lies in the plane determined by the propagation vector of the
plane wave, k, and the electric field E. In Case H the cylinder axis lies in the plane
determined by k and the magnetic field H.

The extinction efficiency, Qext, and the scattering efficiency, Qsca, are usually defined
as the corresponding cross section per unit length, C, divided by 2a, the diameter of the
cylinder (normalization via cylinder's lateral geometric cross section). Qett is the real part
of the complex extinction efficiencies (Qext, Pext), with the imaginary part Pe.tt having a
similar definition. The expressions for an infinite cylinder for case E and case H1 are
respectively:
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=- Cf,+ýbj -_ m (l,-it).-

2a ka L ' .1-

2a ka A-1

The infinite cylinder partial-wave expansion coefficients for the outside fields, a,. b. in

Eqs. (II-1)-11-4), are determined in the usual way by applying the boundary conditions to

the fields at the cylinder surface:

. =in sin a{[.(p)_A.(u)]/ A.}SR. (1-5)

ba' R.{[A4.(M)B.(,)-n2S2sin2a]/A.} (II-6)

o'= R,,{ A,,(e)B,,(p)_n2Sz sin2 al/A,,} (11-7)>

b:" =-a.8(-s

where

A = A. (E)A.(p) -n 2 S2 sin2 a (Ia-9)

S$zfv- 1 a-/u 2  (II-10 )

R. -, J, (v) /H. (v)(I-)

A.(4) = H., (v) /(W,. (v,))] - qj"' (,,) / (Ui.(-))] (.t

B. (4)=[H.'(v)/(vJ,,(v))]- [J.'(u)/(uJ.(u))] (11-13)

u = 11a = ka(Pe- sin 2a)1/Z, v = la = kacos- (II-14)

J,(x) = Bcsscl function of first kind of ordcr n.

H.(x) J,(x)-[Y,,(,x) =Hankel function of the second kind of order n.
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(2) Ratio Algorithm for Computing Cylinder Bessel Functions
We found that our ratio method for sphere Mie calculation [Ref. C)] could be

extended to cylinder cases to better the numerical stability of computing Bessel functions.
Instead of calculating all involved cylindrical Bessel functions J.(z) and their derivatives
J,'(z) , the ratio algorithm builds these functions by first computing an array of ratios
between 2 consecutive-order J,(z)'s: pn(z) = J,(z)/Jn,_(z), where n = 1, 2, 3,-.., N, and then
performing successive multiplications, e.g., J1 (z) = P1t(z)°J(z), J2(z) = P2(z)SJ1 (z), .... ,etc.

The well-known recursion formulas for cylindrical Bessel functions:

2n J()J1Z+.1Z
2 J.' (Z) =Jl.-t (Z) + J.+, (z)

enable us to write the recursion formulas for the ratio array p^(z) and the logarithmic
derivative array Rn(z):

JA.(z) _ I (n= 1, 2, 3, ,N-1) (I1-l.h)

P() J,_(z) -'n I,:•

R.(z)+J(z) ) pz)( 2, 3, N-) (1-16)

' hus it is seen that only the p^(z) array needs to be generated, from which the Rn(z) array
can also be calculated. For a cylinder of size x = ka and complex refractive index m (here
the argument z can be either real: z = x, or complex: z - rx), the entire p&(z) array
elements are computed via the downward recursion formula, Eq. (II- 15), by starting from
a sufficiently large order N given by

N= 1.IoIzI+1o. (II-,
and using thereby the asymptotic value:

Z (11-18)
2 N

Only Jo(z) is thence iceded to build all JI(z) and J,4 (z) functions by Eqs. (If-15)-(lI-16).
The Neumann functions Yn(x) needed in the infinite cylinder theory, on the other hand,

have to be computed by the upward recursion formulas similar to those for J,(z) above.

(3) Conversion of (Qext,Pext) to Volume-Equivalent-Cross-Section-Normalized (Q,P)

For a finite cylinder of length I and radius a, Qext is usually defined as the ratio
between the cross section and the normally projected geometric area of the cylinder, 2al
(as in the infinite cylinder case, Eq. (TI-1, where I = 1)):

:,, I = _ ., where p = aspect ratio = l/(2a) (11-19a)
2a1 4pa2

However, we have standardi7ed the normalization of our experimental P-Q plot via the
geometric cross section of the sphere equal in volume to the n('nspherical particle under
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study [Rei. 9]. This is because of our empirical finding that the particle volume is a more
dominant factor in extinction, rather than its geometric cross section. By this definition,

Q = C% C.. a. = (3 ,)1/3 1-9b

where a, is the radi,'s of the equal-volume sphere. The above two definitions for the real
part of the complex extinction efficiencies are therefore related by

4 4a (II-20a)
QQ ,, -L • Q~.0 .9716637p11 3

Similarly, for the imaginary part of the complex extinction efficiencies.

P.= """ P,.,& 0.9716637p2I3 (I-20b)

(4) Scattering by a Perpendicularly Illuminated Finite Cylinder

For an arbitrarily oriented infinite cylinder, the expressions for far-field angular
scattering intensities (with respect to cylinder-fixed coordinates) follow those given by
Kerker [Ref. 2, pp. 260-261.], using the same expansion coefficients, Eqs. (II-5)-(l1-8):

i-'-I 2 ='l =.l-" b-L' Icos(n01 (11-21)

,ft2- ; ,1= bA Y. -c.. 2

2 • LIT, I12 .1.= 2'E sin(nO) (11-22)

413
2121 .. r si n'" (no (I-23)
=n =~ -- •"r'1 .1 1

2 2 IT12= _j. aIf 2 "' cos(n0f (11-24)
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Both cross-polarized components 112 and 121 vanish if the cylinder is perpendicularly

illuminated, since a. =-b.1 -0 o as cc-- 0.

The above formulas are for infinite cylinders, where the scattered cylindrical waves
decay as 1/r in intensity, instead of the familiar hlr 2 decay for spherical waves, at a
distance r from the cylinder. The desired finite cylinder expression, assuming the
cylinder is perpendicularly illuminated, is derived in van de Hulst's text [see Ref. 7, pp.
304-306], from which we copy the dimensionless complex scattering amplitude S(O,(p) of
the scattered spherical wave:

S(Osp) Lk (~T E)= PE(*'P-)T(O) ([1-25)

where E(u) = sinu /a, (p is the elevation angle of the observation point from the equatorial
plane of the finite cylinder, and T is either T1, (case E, Eq. 11-21), or T22 (case H, Eq. II-
24). If we further assume that the observation is made only in the finite cylinder's
equatorial plane where p = 0 and hence E(u) = 1, the expressions for the dimensionless
scattering intensity from the finite cylinder simplify to

S= I Is(eo)l2 k . p 2m1 2  (11-27)

where p denotes again the aspect ratio of the finite cylinder.

III. Experimental Data and Comparison with Infinite Cylinder Theory

(1) Retrieval of Microwave Scattering Data and Conversion from Binary to ASCII
Formats

The original microwave data written by PDP computers were all in binar, formats to
save memory space, formats difficult to be compared directly with theoretical
computations, which are mostly written in ASCII formats for modem computers. This
applies to a personal computer, MS-DOS/386DX, recently purchased for these analysis
purposes. We have selected the finite cylinder measurement data from those with the best
system stability records, transformed all of them into ASCII formats by a PDP computer,
and copied the results into PC floppy disks via a VAXI 1/750. Table I lists the selected
data sets, whose scattering quantities are all calibrated in absolute magnitudes, and with
the respective target parameters also shown. These magnitudes are directly compared to
the theoretical predictions, which are also computed in absolute magnitudes.
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(2) Complex Extinction Efficiency (Q, P) versus Cylinder Orientation

The technical detail of the measurement procedures on complex extinction efficiency
as a function of particle orientation is referred to in our earlier reports [Refs. 9-11 ]. We
usually call the Cartesian display of such a measurement a microwave P-Q plot. The real
(Q) and imaginary (P) part of the complex extinction efficiency are respectively related to
the 0 = 0 complex scattering amplitude, S(O), through the Optical Theorem:

Q = 4-. Re{S(O), and P= 4-Im{S(0)} (III-1)

where xv is defined as the size parameter of the equal-volume sphere [Ref. 9], and the
larger the Q is, the more efficiently the particle obscures the incident light (per its unit
volume). A vector drawn from the P-Q coordinate origin to a point on a P-Q curve is the
Cartesian display of 4S(O)/xV2 at that particle orientation, and the phase shift 0(0) suffered
by the 0 = 0 scattered wave with respect to the incident wave is, from Eqs. (I1I-1),

0(0) = tan-' P (111-2)P91

A P-Q plot critically depends on target shape, size, refractive property and orientation. In
addition, the degeneration of mathematical angular functions at 0 = 0, and hence all (Q, P)
values hinge most importantly on the partial-wave expansion coefficients, allows us to
visualize the convergence in a theoretical calculation. It follows then that the most
detailed experiment-theory and/or theory-theory comparisons can be made by overlaying
2 such P-Q plots.

Three such P-Q plots, Figs. 2A-2C, representing the finite cylinders #7 (2:1 Plexiglas
cyl.), #18 (4:1 Plexiglas cyl.) and #25 (8:1 Expanded Polystyrene cyl.) respectively in
Table I, are displayed so as to compare with the infinite cylinder theoretical predictions.
The following summarizes the findings, some of which have not been anticipated:

(A) To compare the magnitudes of infinite-cylinder-theory (QV,, P.) as computed by
Eqs. (11-1) & (11-2) to finite-cylinder-microwave (Q, P) as represented by Eqs.
(III-1), a factor 0.9716637p 113 must be multiplied to the former (see Eqs. (II-20a)
& (1-20b)).

(B) The infinite cylinder theory can predict a fahily close match with microwave P-Q
data, both in magnitude and in phase, for aspect ratios as low as 2:1, if the cylinder
orientation is such that (x < 300 (i.e., X > 600). The agreement appears to
improve as the aspect ratio p increases,
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(C) Although not included in the selected data of Table I due to its dubious
measurement stability, the (Q, P) of a nearly perpendicularly illuminated 1:1
Plexiglas cylinder (ka = 2.716) agrees well with the infinite cylinder theory.

(D) The experiment-theory agreement is in general better when the cylinder axis is in
the k-E plane than in the k-H plane.

(E) As cylinder approaches nose-on incidence (x-*900 ), infinite cylinder theory
invariably predicts Q--0, no matter how large a is. This has never been observed
i.1 our experiment, although the cylinder in Fig. 2A came close to it. On the
contrary, for a small-radius cylinder such as in Fig. 2B, one may expect unusually
large Q (resonance) near end-on incidence, even though the cylinder presents there
a small, or even the smallest, geometric cross section with respect to the beam.

(3) Angular Scattering by Finite Cylinders at Normal Incidence

Even though the exact solution to scattering by an infinite cylinder at normal incidence
(cx = 0) has long been known [Ref. 5], its practical use has been limited to finding
scattering profiles, and few attempts have been reported on the magnitudes of scattering
from a given finite cylinder, The experiment-theory comparison made in this article may
even be thefirst of such attempts.

On the other hand, the microwave data have been measured in absolute magnitudes
[Refs. 1, 6, 10, 11], through calibration by standard spheres which are measured in quick
succession to the particle under study. We refer again to the measurement procedures in
[Refs. 6 10, 11] and point out that the 3 preferential orientations in Table I are such that
the cylinder axis is parallel to incident E (case E) , H (case H) and k vectors, which are
part of the 44 (or even 272 [Ref. 6]) orientations typically stepped through by computer-
controlled target orienting. In the present comparisons, we limit ourselves to the case F
and case H orientations only, as displayed in Figs. 3A-3C, for #5 (2:1 Plexiglas cyl.), #19
(4:1 Plexiglas cyl.) and #22 (4:1 Expanded Polystyrene cyl.) in Table I, respectively.

The comparison figures are self explant,,ory, and we list a few comments:

(A) Eqs. (11-26) & (11-27) with the use of Eqs. (11-21) & (11-22) give the desired
formulas for theoretically evaluating the angular scattering from a perpendicularly
illuminated finite cylinder, if the observation is to be made on or near the cylinder's
equatorial plane.

(B) It is very gratifyiag that the computer- controlled target-orientation device had
performed the intended tasks over protracted periods of orientation stepping.
Without this feature it would be very difficult, if not impossible, to retrieve the
desired orientation-dependcnt data, such as case E or case 1I.
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(C) In general the theoretical magnitudes match very well with the observed ones.
Certain discrepancies between the two usually occur at 0 = 00 and at such O's
where the scattered signal is small, or even much smaller than, the residual,
fluctuating background which is very difficult to compensate [Ref. 11].

IV. Conclusions

The work in this article is motivated by our wanting to make a systematic catalog of
our microwave scattering data so as to test the utility of the long-developed infinite
cylinder codes. Although these codes can now be run efficiently in a variety of
computers, fast or slow, the use of cylinder codes has not been as popular as Mie codes
for spheres because of the simple remaining question: how to apply the codes for ilfinite
cylinder tofinite cylinder scattering? We answer this question by:

(1) For ot < 300 and the aspect ratio p as low as 2:1, the particle-orientation dependent,
complex extinction efficiency (Q,P) of a finite cylinder can be closely approximated by
the infinite c;ylinder expression (Qert,'ert) through a multiplication factor which
depends only onp (see Eqs. (11-20a) & (1l-20b)).

(2) If observation is made only near the equatorial plane of a perpendicularly jluhminated
(a = 00) finite cylinder, the angular scattering intensities can be calculated rather
precisely from the infinite cylinder expressions (see Eqs. (11-26) & (11-27)).

(3) Otherwise, infinite cylinder codes cannot be safely employed to finite cylinder
problems without substantially modifying the analytical expressions. Near nose-on
incidence (a = 900), e.g., infinite cylinder codes are useless, and we may expect
intriguing resonance phenomena. Work is in progress to answer this remaining
problem via developing a reliable but easy to use, approximation solution through
waveguide mode corrections to the infinite cylinder solution.
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Table I Selected Finite Cylinder Microwave Scattering Data
and the Target Parameters

ID a 1 p = l/(2a) ka = 2raA x. m=m'-im" Extinc- PO RO Specular
# radius length aspect cylinder volume- refractive tion Angular Scatt. vs

(cm) (cm) ratio size equival. index P-Q Scatt. Azimuth
parameter size param. Data Data Sweep

1 .849 3.400 2.002 i.676 2.418 1.610-i.004 1
2 .955 3.828 2.004 1.885 2.720 " 1
3 1.058 4.240 2.003 2.089 3.014 " 1
4 1.165 4.670 2.004 2.299 3.318 " 1
5 1.270 5.100 2.008 2.506 3.620 1 3 1 6
6 1.376 5.512 2,002 2.717 3.920 1
7 1.482 5.940 2.003 2.926 4.222 1
8 1.590 6.365 2.002 3.137 4.526 1
9 1.799 7.206 2.003 3.551 5.123 1 1
10 2.012 8.050 2.001 3.970 5.727 " 1
11 2.118 8.485 2.004 4.179 6.031 1
12 2.328 9.328 2.004 4.594 6.630 " 1
13 2.540 10.185 2.004 5.014 7.237 1

14 1.304 5.014 1.922 2.574 3.663 1.322-i.005 1
15 1.302 5.032 1.932 2.570 3.671 1.416-i.005 1
16 2.490 10.056 2.019 4.914 7.112 1.321-i.005 1
17 2.512 10.046 2.000 4.958 7.118 1.442-i.005 1

18 .785 6.282 4.001 1.549 2.816 1.610-i.004 1 3 1
19 .964 7.712 4.000 1.903 3.457 1 3 1
20 1.204 9.636 4.002 2.376 4.320 " 1 3 1
21 1.457 11.656 4.000 2.876 5.225 1 3 1

22 1.157 9,256 4.000 2.284 4.150 1.335-i.005 1 3 1 6
23 1.620 12.970 4.002 3.198 5.812 1.390-i.005 1

24 .635 10.110 7.961 1.253 2.816 1.610-i.004 1 (round-ends cyl.)
25 1.144 19.334 8.009 2.259 5.174 1.333-i.005 1

26 .744 18.260 12.26 1.469 3.878 1.327-i.005 1 3 1 6

Note:
PO: Data for preferentially oriented cylinder. RO: Data for randomly oriented cylinder.
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Fig. I Geometry of Scattering by a Cylinder

5
2:1 CYLINDER

rn =1.610 - i 0.004

a = 1.482 cm
P 1 5.940 cm

3 p l/(2a) = 2.003

ka =2.926

2- 4.222
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Figure 2A Complex Extinction Efficiency Vs Particle Orientation for a

2:1 Circular Cylinder (Plexiglas)

Suffixes mw and ic respectively denote the microwave data and the infinite cylinder theory
result. k, E and H mark the orientations where the cylinder axis is parallel to the incident-
wave k, E and H, respectively, and the running numbers show the orientation angle: X =
900 - a. The orientation angles marked in larger letters are for the axis in the k-E plane,
while for those marked in smaller letters, in the k-H plane.
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4:1 CYLINDER
m 1.610 - i 0.004
a --a0.785 cm

P 1 6.282 cm
14- p l/(2a) = 4.001

H Hi ka =1.549
3Mmw E x= 2.8163 60 60 Ei

2 m m mw

30ic

203

0 1 2 3C
icm 

30row
0 2 •/ 3 5 7

-1 1- 0 
k MW
mw

-2

-3
Figure 2B Complex Extinction Etficiency Vs Particle Orientation for a

4:1 Circular Cylinder (Plexiglas)

Suffixes mw and ic respectively denote the microwave data and the infinite cylinder theory
result. k, E and H mark the orientations where the cylinder axis is parallel to the incident-
wave k, E and H, rest ..tively, and the running numbers show the orientation angle: X =
900 - a. The orientation angles marked in larger letter3 are for the axis in the k-E plane,
while for those marked in smaller letters, in the k-H plane.
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S P 8:1 CYLINDER

4- H i" E E m =1.333 - i 0.005
10 W a 1.144 cm

3-- 1 =18.33 cm

m p = /(2a) = 8.009
2-- 0 MW ka =2.259

x =5.174

Oic

/ 0M /0ic

- o 3 4 5

-2

1 0 mw 10

Fiue2 oplxEtntonEfcec s atceOiettoWo

Figure 2C Complex Extinction Efficiency Vs Particle Orientation for a

8:1 Circular Cylinder (Expanded Polystyrene)

Suffixes mw and ic respectively denote the microwave data and the infinite cylinder theory
result. k, E and H mark the orientations where the cylinder axis is parallel to the incident-
wave k, E and H, respectively, and the running numbers show the orientation angle: X =
900 - ac. The orientation angles marked in larger letters are for the axis in the k-E plane,

while for those marked in smaller letters, in the k-H plane.
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The Response of N layer Bianisotropic Cylindrical
Structures to Obliquely Incident

Arbitrarily Polarized
Plane Wave Electromagnetic Radiation

D. K. Cohoon
43 Skyline Drive

Glen Mills, PA 19342

September 22, 1993

;scribe exact formxiaw.: 'or the interaction of obliquely incident ollctromagnwfltic
radiation with an N layer anisotropic cylinder.

Some new methods of developing the response of a thinly coated metallic 'ylihdr
to electromagnetic radiation have been developed. In contrast to th(,orie(s (,veloped by

(Cohen [16], Wait ([52], [55] Chapter 7 pp 152-209) Bohren and Huffman ([9] pp 194-201)
and Yeh [59]) the representation of the fields in the thin coating uses no B(,ss,,1 or Haukol

functions. This method eliminated a severe round off 2rror that was incurred when using
the traditional solutions (Bussey [11]).

Egon Marx ([34]) considered the! interesting problem of scattering b~y an infinite cylinder
that is lying half an a half-space with one electromagnetic prop('rty and half in the, r,'egion
from wldch the stimulating radiation is coming with its axis lying in the plane separating
the two r,.gion.. Marx's work could be- Used to help ,explain the ,tisiogl of the hnlan ,•orIa,,.

1 Vector Calculus

We, will dliscuss cylin, rical ,ordinates, vctor calculus in cylindirical c,)(',,rli.ats.. anl
methods of ropresenting vector fields re(prsenting eletri," and magn,,tic vectors inlu,',d
within layers of a nmultilayr cylindrically symnnetric strutur,,s wher,, thlie ijat,.rial filliln,
the regions between separating cylinders may possibly hawv full tonsor tbialisotropy,

1.1 VECTOR FIELDS IN CYLINDERS
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The vector fields in the interior of a penetrable layer and outside the cylinder are

represented in terms of the vector fields

A(,,,h) = exp(inO)exp(-ihz)., (1.1.1)

B(,,,h) = exp(inO)exp(-ihz)6e, (1.1.2)

and
C(n,h) = exp(inO)exp(-ihz),. (1.1.3)

where in terms of the unit vectors 6:, 6., and 6 of the cartesian coordinate system we have

4, = cos(O), +± sin(O)F (1.1.4)

and

( ) =-sin(O)T + cos(9)F, (1.1 .)

and

Thus, in terms of the unit vectors of cylindrical coordinates after multiplying both sides of
equation (1.1.4) by cos(0) and multiplying both sides of equation (1.1.5) by -sin(p) and
adding we obtain

cos(G),. - sin(O)o (1.1.7)

and similarly 4 = sin(8)• + c0s(O)6o (1.1.?•)

Hence, if an arbitrary vector is represented in Cartesian coordinates as

=V=V-, + Vj+V: (1.1.9)

then
V=(cos(O)V~ + 8Zn(19)V)i7'.+

(-sin(O)V" + c,,s(&)VY)eF0 + 2  (1.1.1()

and more importantly if a vector V7 has radial, theta and z coniponeIts given by V,., V0

and V• respectively, then
1, = (Vcos(9) - V0ISi,(9)),i4+

(V,,n.((9) + V•,..,,(O)),-!Y + vg.. (1.1.11)

If the ,lectric field is represented in terms of cylindrical coordinates, then

curL(V,.J '. + Voe7o + Vzi.) =I ov, ao0 V' )v
( 0 az/ ' + (z - o + (( (r - (1.1.12)
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We will represent the internal and external fields as a linear combination, with coefficients
in a ring of functions of the radial variable, of the vector fields defined by equations (1.1.1),
(1.1.2), and (1.1.3). The identitities

curl(F(r)(.m..)) =

F(r) -

f-l-A(,,.h) + ihF(r)B(m.,h) (1.1.13)
r

curl(F(r).4(,,)) =

- hF(r)A(m~h) + (-F r))lIC)(..4

curl(F(r)B',,,..)) =

ihF(r)Al(m~h) + (I () (rFP(r))) vi (.1)

1.2 COORDINATE FRAMES

Foll"ýwing Ariel Cohen ([161) we describe coordinate frames which are used to represent
incoming, internal, and scattered fields in laboratory, absorber, and detector coordinate
frames. The approach taken by Cohen ([16]) ,,aulbles us to treat the oblique ii'cidnuC,
problem and also treat the problem of random orientation. We let i denote the r unit
vector along the z - axis of the laboratory frame, We suppose that i.. is the unit vwcrt)r
along the axis of a cylinder which passes through tih origin of the original coordinat,
system. We suppose that

= sin(O,,)cs(0,)r., + . + cs(9,,)F (1.2.1)

We define the x, axis by the cross product,

= (, × ! ' )/.,,i,(O,) (1.2.2)

so that
e'o = fil(Oa)t,. - CO,('O),y (1.2.3)

, f,, (o• P),. + ,..(oo),i,(;,),, - .,(o,),5 (1.2.4)

We see that we call di'sdcril)v thi eloctric vector of the iwcoming radiatio n by t it rill,

l = E,,oc;r1,(-ikz + iwt)ir, (1.2.5)

If we do this and transform the variabhl z to the( absorber coordinate fraie,, we, s., thlat

z = h-1. i(0') Y + co)s,(0,')Z" (1.2.6)
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Letting
y,, rsin(O) (1.27.7)

in the absorber coordinate frame and making use of the generator function relationship,

exp((i12)( - 11t)) E - ,,)(128

and letting t =exp(iO) and observing that

(/)t- 11t) i(8qin(O)i) (1.2.9)

we see from (1.2.8) that

exp~~isill(O~i U ex-n),()(..o

We see that if use the fact that
=n r .sin(O) (1.2.11)

and we let

isin(19)z- = (-ikI))(-8st1(9a)yn = (isin(O) - (kor.'bi(O)) (1.2.12)

we observe that. equations (1.2.12), (1.2.11), arid (1.2.6) imply first that

ecxpkjz (.j(-iA.,,(-.Si77(9&I)) . X)irc1(Iz)(1.2.13)

and then that

We 11ow use equation (1.2.14) and the definition

i= {k-orsi7(t9,)} (1.2.15)

in equation (1.2,10) to obtain tho vxpression for cxp(- ikfz) hi absorbvr coordlinates tilar
is given by

(-'Xp(-ik-oz) = E x.i9J~{~r~(~ c] rp(-ikncuo.q~lzz) (1 .2.16)

This simple notion will heilj u1s to obtaill il eI xact soluitioni of tite obli(JW ilicil1eiice pj-l'fIIl(vJ

for N layer allisotrolpic cyli rub rs.

2 Representation of Incoming Radiation

We will its5( tdirei' ((fl)IdiidtA systevilis, o)Iie is it lain ii't ny Syso'viii t hat P('Iiliil fix('(I
ii'', othefr i.s; a eordinaitt systf-nI it] Which the( z axis is t w axis of t-11 cyli I(In e..
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3 OBLIQUE INCIDENCE

At least two methods have been developed to treat the oblique incidence problem. The
classical paper on scattering by cylinders subject to obliquely incident electromagnetic
radiation seems to have been due to Wait ([51]) and uses only one coordinate system
with a z axis coinciding with the cylinder axis, while the second method ([16], [18]) uses
three coordinate systems - a laboratory frame where the direction of propagation of the
incoming radiation is that of the unit vector in the direction of the positive z "ixis, a

cylinder frame where the z axis coincides with the cylinder axis, and an obsorvei frame
where the measurement device for measuring the scattered radiation is on the z ams with
a positive z coordinate.

3.1 Generalized Single Frame Analysis

In ([511) there is only one coordinated system and the cylinder is oriented with its axis
parallel to the z axis of this coordinate system, but th., component of the electric vcrtor of
the incoming radiation that is parallel to the z axis aid lying in the plan, 0 = 0' is given
by

Eo.sin()eri(ik.1 rsi,,() ))exp(-ik\v ,zco.())C•I,(i~t) (3.1.1)

where in Wait ([52]) the angle ( is the angle that the incoming radiation makes with respect

to the negative z axis. This is the same treatment givwn in rhaptvr 7 of a rvcent book of

W;1it. ([55]). The radial component of the electric vector of the incoming radiation is

- E,cs())e•p(ikv.I rsii(()c,,s(9))e(xp(-ikN,, z,,s(•))r,(iwt) (3.1 .2)

We see that both the radial and the z componenits of the ,lhectric vector of t lih incoinin
radiation are, in view of th, vxpan.iionl giv,,n by ,,quation (1.2.8), givwn u.ing f.qiltinu>

(1.1.1) and (1.1.3) by

E?- (V, (r),,,, (&.z)} 3.1.3)

so that the total (,lectric vwctor is given by

E E,. r. + E'.( (3.1.5)
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Equation (3.1.5) and equations (1.1.13) and (1.1.14) imply that the curl of the electric
vector is given by

-(N 4 (r)
curl(E) . ina. r, C(m,h) (, Z' )

( iha (N) )(r) +( iC$LN+1) iN Z)

+ N+I)F(c)
+-,h , (r)B, (0, z) } (3.1.6)

For a bianisotropic material, we have

iw•llf ZiE - carl(E) (3.1.7)

and using equation (3.1.6)we can even for tensor f and tensor N solve equation (3.1.7) for
H Using a general representation of vecE in the interior layer and using equation (3.1.7)
we can solve for fl in each of the layers. By requiring continuity of tangential componelnts
of f' and R across the cylindrical surfaces r = R. which separate regions of continulity of

tensorial electromagnetic properties, we develop a system of ordinary differential equations
in the radial functions.

4 Coated Cylinders

We. consider a metalic structure with an arbitrary coating.

4.1 MAXWELL EQUATIONS

We assume that the coating material is bianisotropic, a material more genral than a
chiral material. Tho Maxwell equations are, for time harmonic radiation, givun by

curl(E) = -iWIH- - (4.1.1)

and
curl(H) = (iw7 4- =)E + IH (4.1.2)

Th(e radiation sou'rc te•ri which giv(es tClo power density is given by

(1/2)Rc (iwt) (=7,f +-
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xea(r)t. I fEa,,gtca 12} (4.1.3)

where if M2 is the surface containing the impedance sheet, then

xan~sI !ongnt1L2 dv j = * Ea~icw 12 dA (4.1.4)

is the characteristic function of the surface supporting the impedance sheet. We consider
non plane wave sources such as tightly focused laser beams interacting with these structures
([12], [45], [31], [5], [4]) and use the energy densities as a source term in the energy equation
to determine the future state of the cylinder.

4.2 Cross Products

The numerical problem associated with scattering of radiation by thinly coated perfect
conductors reduces to the problem of evaluating the cross products of Bessel and Neuman
functions (Abramowitz and Stegun [1], page 361 formula 9.1.32),

p,. = JV(a)Y,(b) - J4,(b)Y,(a), (4.2.1)

q, = J,(a)Y,(b) - J,(b)Y,,(a). (4.2.2)

r,,= J;,(a)Y,,(b) - J,,(b)Y,'(a). (4.2.3)

and
s,= J,(a)l,.7(b) - J,.(b)Y,.(a), (4.2.4)

Observe that the recursion relation is
J,,((z)Y,,(z) - J,,(z)Y,,+I(z) = 2 (4.2.5)

7rZ

If 9,(z) is one of J,(z) or Y,,(z) then we see that

9, = z) -9.(z) + -g,,(z) (4.2.6)
z

We see that equations (4.2.5) and (4.2.6) imply that

- J;,(z)Y,(z) - J,,(z)Y}(z) = 21 (4.2.7)

7rz

We expand the Neuman function and obtain

Y,(b) = Y,,(a) + Y,,(a)(b - t)+

The function g,,(z) satisfies Be'ssl's dtifferential e(quation,

zg,,(z) + zg,,(z)+
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(z2 - v 2 )g!(z) = 0 (4.2.9)

Dividing all terms by z2 we see that
g"(z) 1- (z)

z

-2 1) QL,(z) (4.2.10)

Differentiating all terms of equation (4.2.10) we see that

g(3)(z) =- 2+V I}()
L 2 g )

+ -3- + (4.2.11)

Differentiating both sides of equation (4.2.11) and using equation (4.2.10) to remove the
second derivative terms we find that

g(4 ) [ + =(z)

[11V 2 +V4 --((1 +2 + 1 (Z) (4.2.12)

We see that there ar. two forms for the derivatives given by

(2L (Z ((Z) +~z

g' ,(4.2.13)

and by

:IL

I ,, (z) 
(4.2.14)

k 0 I) 
+

NVW first use the equations (4.2.14) and (4.2.13) and i(,pation (4.2,S) to find an ex)r(es-
sion for p,. We find that

P, (a. b) = p,,

J,,(a)Y,(b) - J,,(fi)Y,(.) =

J,,(a) Y,,"(t) + Y,7(a)(b -- () 4
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(b - a)i '

+ G,)Y(a]>+
j=j!

Y,(() { J,(a) + J',(a)(b - a)+

± [Fj,,) J,( Ua)J+,(a)] (b -a ) j! (4.2.15)j__., j I
j= 1

Making use of the Wronskian relation (4.2.5) in equation (4.2.15) we see that the expression
p. defined by equation (4.2.1) is given by

"P ,,(a,b) = (b- a) ( -a

.7.2 2) (b - a 42.6
)=2 7

We next use the expansion (4.2.8) and the Wronskian relation (4.2.5) to evaluate the
functions q, defined by equation (4.2.2). Substituting the expansions into the expressioni
for the q, given by equation (4.2.2) we see that

q• = J,(a)Yj(b) - J,(b)Y,,(a) =

J.(a) Y(a) +

C-0 ((b_- a)J-')
[F( 1.,,)Yj(a) + G(,,,)Y1 (a)] (j - 1)!

-Y,(a) {J[(a) +

((b - a)3j

2+ G'1 ;J,,(,)] U( __ 1)!
J,=2

The Wronskian relation implies that

2q,, = -7+

r ZF,, 1 . (W (ba)i;) (4.2.17)

In this expression there ar' no Bessel functions and there is n1o ro(nd off error.

For the function

S,,(a, b) = s,, (4.2.1S)
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defined by equation (4.2.4) we see that

S,(a,b) Y. G(,,,)(a) I (4.2.19)1ý (j U- 0)!

Finally, for the function
R?,(a, b) = r,. (4.2.20)

defined by equation (4.2.3) we see that

R, (o.,,b) =(-2)+

G,, (a (4.2.2 1)

Equations (4.2.16), (4.2.17), (4.2.21), and (4.2.19) give us, for modest values of b- a
an error free weans of computing the cross products that arise naturally ill describing
the interaction of electromagnetic radiation with a coated cylinder. When Il•o (coating
thickness is large, the cross prnducts may be evaluated by direct comlpttation Utsing the

Bessel and Neumann functions.
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Abstract

Theoretical values for absorption and scattering properties of droplets possessing spherical, ec-
centrically loceted inclusions are presented. The theory is exact and an outline of it is provided.
Particular attention is paid to resonances in glycerol droplets that possess relatively small latex,
water, and air inclusions, and to haze elements and cloud droplets that entrain smaller carbon
(soot) particles.

I. Introduction

There has arisen, of late, considerable interest in the optical properties of micrometer-sized parti-
cles that entrain micrometer- or submicrometer-sized inhomogeneities. One focus of this interest
is on the effects that the inhomogeneities might have on phenomena associated with morphology
dependent resonances (MDRs) of their hosts. Experimental investigations are being carried out in
this context on fluctuations in the intensity of elastically scattered light 1- 3 and in the resonance
spectra, 4 as well as on the effects of seeding on droplet fluorescence, 5 lasing,8 and stimulated
Raman scattering.7 Approximations are also being developed for the study of intensity induced
inhomogeneities in droplets.' Not only are arbitrarily located subparticles of interest; there is still
work to be done involving the more familiar concentric core-shell morphology, especially in relation
to lasing emission from layered microspheress,10 and cladded fibers.21

In this report, the theory of light scattering by spheres possessing one or more spherical inhomo-
geneities is developed. The inhomogeneities, or subspheres, are of uniform but otherwise arbitrary
composition and are restricted in size and number only by the volume of the host. Numerical
results are presented and discussed in regard to differences between the optical properties of ho-
mogeneous and such inhomogeneous spheres as described above. Attention is focused on questions
that have arisen in the course of experimental research that is being carried out by Dr. Ronald
G. Pirmick of the Army Research Laboratory's Battlefield Environment Directorate, White Sands
Missile Range, NM.

It is concluded that, while aggregation of latex inclusions in a glycerol host may interact with the
internal fields of the host to produce noticeable time-dependent fluctuations in the light scattered
by such a system, it is not yet clear as to what the degree of those fluctuations might be relative
to those produced by correlated scattering from the ensemble of inclusions. Furthermore, the
addition of inclusions seems to lead to a symmetric broadening of host MDRs, whereas the calcu-
lations indicate that only an asymmetric broadening should occur under the given experimental
conditions. Further experimental research appears warranted, with added attention being given
to the issue of photon correlation spectroscopy.

* Another discipline to which structured spheres are of concern is atmospheric science: The ubiquity
of soot and its dominance as anl absorber of visible radiation in the atmosphere are well known.
Soot, in turn, typically occurs as clusters of carbonaceous spherules. In anthropogenic haze,
individual haze elements frequently occur in the form of sulfate/soot composite particles. 12 Paruigo
et al.13 have found that 30% of the particles in the Kuwaiti smoke plumes were S0 4 -coated soot
particles, and this was in an environment where dust and salt grains could compete equally as
condensation sites for the sulfate. Sulfate aerosols are the primary components of haze. In addition
to this role, such aerosols can serve as cloud condensation nuclei. Through either nucleation or
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impact scavenging, carbon can be incorporated into cloud droplets. The occurrence of carbon
on or in cloud droplets is, in turn, of interest as a possible contributor to the so-called cloud
absorption anomaly.14 ,15 An understanding of the absorption properties of soot that has been
scavenged by transparent host particles is thus of considerable importance in assessing the impact
of such particles on the earth's radiation balance and on visual air quality.

II. Theory

The vector spherical harmonics (VSH) N') and M($ ) of order m and degree n can represent,
respectively, transverse magnetic (TM) and transverse electric (TE) waves propagating in a ho-
mogeneous medium and characterized by spherical surfaces of constant phase. (The harmonic
time dependence exp(-iwt) is assumed.) The direction of propagation of these wave fronts is
inward when the radial dependence is governed by the spherical Bessel functions, j,(kr), k being
the propagation constant of the medium, and outward when governed by the spherical Hankel

functions of the first kind, h$,)(kr). This convergence or divergence of the radiation field is indi-
cated by x = 1 or x = 3, respectively. (The notation is that used by Bruning and Lo,"' and later,

by Fuller."' )

II.1. Reflection and trzrnsmisaion of an outgoing sphetical wave at a concentric, concave spherical
boundary.

Consider now the case of an outgoing electric partial wave, represented by Emn N(3)n + ")

that crosses a spherical dielectric discontinuity of radius 2a centered about the coordinate system
to which the VSH axe referenced. Let the refractive index of the interior region be 1N and that
of the exterior be unity. The outgoing field will be partially reflected and partially transmitted at
the interface. The tangential components of the exterior (transmitted) partial field must match
the sum of the interior (incident + reflected) partial fields at the boundary and we may therefore
write

)(3)] = + 2, ±) M + M(3)1 (1)

Because of the orthogonality properties of the VSH, there is no coupling of mn to rn'n' normal
modes (nor is there coupling between TE and TM modes) at the boundary. Thus the angular
depeudence of the 6o and io components of the partial fields cancel algebraically in Eq. (1).
Because of the different refractive indices on either side of the boundary, the radial functions, here
expressed as Ricatti-Bessel functions, do not cancel and we have

'N '4= '( e'nQ(,) + '4.O'(17), (2)

where ' - k'a and 177 = 'N ý. From the magnetic counterpart of Eq. (1) we obtain
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Thus

1- ~ n 401e 't e) - WW~ 0&4('I)'

By virtue of the Wronskian,

Wf(z), Yn W(z)} = Z 2 i (Y1n represents the spherical Neuman functions),

and by denoting = 1N f'Q M 400 - W( ) O

we have
16 n _/L.

Precisely the same arguments produce the expressions

1 -n=V 04 7)-ý ý)O'0 (6)•'n('e) 4€(Cq) - 1Nr•(e) •&•(•)

= [t.07) Onb07) - 0-(0) 4'n()] / "t = j/2) o, (7)

1-= - P1 Nn(M V'n(07) - CnM1~ W'0)] /PEP (8)

as well as the standard Lorenz-Mie coefficients 'a,, b, 1 cn(= 1N 16n), and ldn(= 1N 'd,).15

For incoming spherical waves, the Lorenz-Mie coefficients of order n for the scattered and internal
partial fields are the spherical wave analogues to the Fresnel coefficients for reflection and refraction
of a plane wave at a planar boundary. With the derivation of the '"' (hacek) coefficients, the analogy
can now be extended to the case of outgoing spherical waves reflected and transmitted by concave
spherical surfaces. A simple illustration of the above points leads to an elegant solution of the
standard concentrically stratified sphere problem.

11.2. A novel solution for light scattering by stratified spheres.

The crux of the Lorenz-Mie theory lies in finding the projections of a plane wave onto vector
spherical harmonics centered about a spherical scatterer, as is depicted in Fig. 1. The incident
field may then be expanded in the VSH basis with the expansion coefficients (projections) of the
TM and TE modes denoted, in order, aspmn and qmn. The coefficients of reflection (a,, br) and
transmissicn (c,,, d,) serve as complex amplitudes of the (TM, TE) vector partial waves in terms
of which the scattered and internml ,+ ids are expanded, as illustrated in Fig. 2.

Consider now a wavefront incident on a stratified sphere of which the core (shell) has a refractive
index 2N (AN) and size parameter ý (h). The incident wavefront will couple to the normal modes
of the shell. The strength of this coupling is still given by the expansion coefficients p,,, and q,,,.
The shell will produce a scattered and a transmitted field with associated partial wave amplitudes
pmn lan, qmn Ibn and p., 1cn, q.n 1d4, just as though it was homogeneous. The transmitted
partial fields of degree n couple directly to the nonnal modes of the same degree associated with
the core particle, producing a scattered field with amplitudes pm, 1cn 2a, and q,, 14d 2 b,, where
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the 2an and 2 b, are the Lorenz-Mie coefficients of a core particle immersed in an infinite medium of
refractive index 1N. From the discussion surrounding Eq. (4), it is seen that the fields transmitted
to the exterior of the mantle will have amplitudes pn, 1cn 2an 1'n and q,,n Id 2 b, 1j., and the
internally reflected fields will have amplitudes p,,,, I 2an 14n and qmn Id 2 bn IL'.

A multiple scattering series is thus constructed and the scattering amplitudes of the coated sphere
are found to be

AE ..n =Pm[1an + ]cn 2 16 E( 2t (')k

Pmn [an+ 2 a, lCn 16n (9)I1- 'an 2a

and

!AHmnn q,,n ,, + ldn 2 bn lj E(2 3bn 1bn)k]

k=O

= qmfl [bn' 4 b 1 44]n b (10)

provided, of course, that the moduli of the quantities in parentheses are less than one. This process
is illustrated in Figs. 2 and 3.

The problem of scattering from a sphere containing multiple spherical inhomogeneities must, as .
special case, be reducible to the problem considered above. Eqs. (9) and (10) have not only been
shown to agree numerically with the scattering coefficients of Aden and Kerker,' 9 but a reduction
of the multiple inclusion problem to the coated sphere problem, outlined below, provides an
independent verification of the order-of-scattering (OS) argument.

11.3, Light icattering fiorn an eccentrically stratified sphere.

Now let a wavefront be incident on a composite particle made from a sphere of rcfractive index
2N and size parameter ý located arbitrarily within a spherical and otherwise homogeneous host of
refractive index IN and size parameter ý. The incident wavefront will still couple to the normal
modes of the host with a strength determined bypm, and q,,. The shell will produce a scattered

and a transmitted field with associated partial wave amplitudes pnn lan l (1) _qmn 1hn lb(1)
and Pmn 1c-, qnn ldn. Since the spherical surfaces are not concentric, each of the transmittt-d
partial fields couples to every normal mode associated with the inclusion, producing a scattered
field with amplitudes 2amn and 2b,(n. For example, the TM coefficient is

2 a(2) = 2an A I. C'J• +qAV --4B-JAY

where the 2an are the TM Lorenz-Mie coefficients of a core particle immersed in an infinite

medium of refractive index 1N. References for the quantities A, and A•, are given in the next
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section. The fields scattered by the inclusion are then transmitted to the exterior of the mantle or

internally reflected by its surface with the respective amplitudes 'a, ( 1b,(2 and I(), Id(2. The
internally reflected fields will in turn be scattered by the inclusion, and so on. The coefficients for
the total scattered field may thus be constructed as

00 00

!4BEmn •--(j)' and hHm,(= 10 (12)
,nn ~mnl 12

j=1 j--

where, for the TM normal modes,

la.) = 2 .' + (13)

(j+) r' ' (j~)j 1(id - (14)
CAVn + P n

Cmm = a (15)

for j > 1. Expressions for the TE modes are readily derived from similar arguments. This process
is illustrated in Figs. 4 and 5. Calculations based on this order-of-scattering (OS) treatment are
in agreement with those obtained by Borghese et al.,20 who solved a system of linear equations to
obtain the scattering coefficients. For a concentric inclusion, Eqs. (12) reduce to Eqs. (9) and (10).

11.4. The solution for an arbitrary number of inclsiors.

The multiple inclusion problem closely parallels the problem of scattering by sphere clusters, an
overview of which is provided in Ref. 17. The spheres in the host particle are centered about the
origins 10, where t is an index ident;fying a specific constituent in a set of L spheres. The index
e = 1 is reserved for the host itself. The host and inclusions (with radii 1a) are characterized by
the size parameters k la = ý arid complex refractive indices LN. It is assumed that the total electric
field at points exterior to the host, inside the host but outside the inclusions, and in the inclusions
can be expanded, respectively, as

E-" 7_(,n +-m, -- ,. + (3) +!4H,, (3,• (16)

- ~ 1N~l +1qmn 1M$l) +n' ~1W $ii(7
•E E E 7n (mnk• mn(' -n•..t ),, ,,r)l (7

n=l m=-n t>

E�n�n
=i .. ,,,), +(is)t 3)I (3 )

•H j.() (17)~
( in mn mm rn'.M'41 mm m

where the expansion coefficients S4Emn and ',I TImn correspond, respectively, to the TM aia TE

Modes of the eth sphere, and eIN$3 and .m., are vector spherical harwrnics ceniered about the
Ath inclusion.
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The boundary conditions of the multiple inclusion system can be satisfied with the aid of the ad-
dition theorem for VSH, and one is led to a self-consistent set of linear equations for the scattering
coefficients:

w kEer stian coe [iCEntsx +A,,n + .3,,,,,,,,n + defined + the (19)

fV H,,n '=, bn +CE2ji + , HT + of t eelBe t ) (20) h, [nCHen tesp a o +n ,w o n gn s n)

1 C.E = 1 Cnkn + 1a,1  -n +('AE~A;" (21)

'C~rmn = 1 dnqmn + "i nn) (2
t961 &,,u

"AEmn = IeanPn + 1 En 0, + resHpectj;) (23)

e AHmn = obnqtn + hJn EsE (aIHniVAi + ,4tEndsto)0 (24)

where the transeatio ncoefficients geaty s inn Xe, and bit" are defined by the addition theorem
for VSH, ,16,7,21,22 and 'CEmn,, IC n are the TM, TE coefficients of the electric field in the host
material. A detailed derivation of these equations will be the focus of an upcoming publication.

It is worth noting that when the separation between two coordinate origins, in this case the

centers of the host and irciusion, tends to 0, XAln and ceo tend to aggregand 0, respectively,
and the set of Eqs. (19)-(24) is greatly simplified. A bit of algebra then leads to Eqs. (9) and (10).
Arriving at Eqs. (9) and (10) from the self-consistent set of Eqs. (19)-(24) shows that the former
are valid even in the event that the multiple reflection series fail to converge. Such a problem with
convergence can arise when dealing with optical resonances of externally aggregated two-sphere
systems 1 7 but this mnatter is still under investigation for the case of included spheres.

111. Calculations

An illustrative sample of recent experimental data is presented in Fig. 6. In the experiment,
measurements are made of the intensity of light scattered from an evaporating glycerol droplet
into a small solid angle centered near 900 from the direction of forward scattering. The glycerol
droplet may be homogeneous, or it may be host to large numbers of latex inclusions. The radius
of the host is on the order of 3.25 Mm arid that of the inclusions ranges from 15-52.5 nm. Two
features seen in this figure that are of particular interest in the current study are (1) the increasing
fluctuations in the scattered intensity with increasing sizes of the latex inclusion, and (2) the
broadening and ultimate suppression of morphology dependent resonances, also with increasing
inclusion size. Not apparent in Fig. 6 is an observed tendency of these two features to become
enhanced with increasing inclusion concentration.
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III. I. Fluctuations off resonance.

A likely contribitor to the fluctuations is dynamic light scattering or photon correlation, but it is
also likely that this is not the only contributor. Acccording to the calculations displayed in Fig.
7, a latex inclusion with a diameter of 105 rm can cause about an 8% fluctuation in side-scattered
intensity as it passes through the geometric hot spot of the host. (The term geometric hot spot is
used here to distinguish it from the much more intense hot spots that are associated with MDRs.)

This is somewhat surprising since such an inclusion has only about 2.5 x 10-s the volume of the
host. (Note that the inset in the figure is not drawn to scale--the inclusion would not be visible if
it were.) Now, the fluctuations that arise when 105 =m inclusions are involved are certainly larger
than 8%. In fact, an 8% fluctuation is more in line with those observed when 64 nm inclusions were
used. Also seen in Fig. 7, however, is that 64 nm inclusions are predicted by theory to produce
fluctuaions that are only on the order of a percent or so. Agglomeration of the inclusions has been
invoked to explain this discrepancy, but, as is discussed below, the spheres do not even need to
come in contact in order for 64 rm inclusions to exibit 105 nm-type fluctuations.

In cases where the dimensionless center-to-center distance, kd, between two sufficiently small
spheres is less than one, the particles are not significantly out of phase in their response to an
oscillating field and will behave approximately as a single scatterer with twice the volume of a single
sphere. The scattering efficiency of such a particle is proportional to the square of its volume,
and this leads to a scattering efficiency that is four times that of the isolated spheres. It has
been shown 21 that the scattering cross section of a pair of identical, closely spaced, noninteracting
Rayleigh spheres can be written as

o = Ila, + 220,, + 2Re (12a,) = 2 ["a, + Re ( 12a,)] . (25)

When the incident electric field is polarized perpendicular to the line of centers, '26,, reduces to

Re (12a.) = 9-rjlac2 Cos (kd cos a) [2a(,1, -1,1, 0)jo (kd) + a(1,1, -1,1, 2)j 2 (kd)]V 2 (26)
-97rl'aI cos(kdcosu) (1 -1) inkd -Cos1d] 26

k2 kd [ -- snd kd ,

and the coefficients a(m, n, p, v, p) represent Gaunt integrals."7 The ratio of the scattering efficiency
of the pair to the sum of those of the individuals can now be written as

_____ 1__ 3 Cos(kd cos a) 1 -1)i kd -cos kd (27!)
(IQ + Q) 2 kd - sk kd J

For sufficiently small kd this ratio is 2, as expected. Any variation from this expression is a
rileasure of the strength of e!ectrodynamic coupling between the spheres.

(Given the number density of inclusions, it is likely that more than one inclusion resided in the
geometric hot spot at one time. It is therefore likely that the proximity effects outlined above
contributed significantly to the scattered intensity of radiation, without any actual agglomeration
l•aving taken place.
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M1.2. Broadening of resonance spectra.

In order to better understand the effects of guest particles on the resonance spectra of their hosts, a
number of calculations were carried out that involved differing sizes and locations of the inclusions.
The major findings from these runs are outlayed in Figs. 8-13.

In Fig. 8, the simulation that produced Fig. 7 was rerun, but with the host now tuned to a TE 3
resonance. A 32 nm inclusion is not seen to effect side scattering to a significant degree. The
64 nm inclusion, however, is now seen to produce about a 15% decrease in the scattered intensity.
The 105 nm inclusion reduce, that intensity by 60%, or, more importantly, it is seen to reduce
the scattered intensity almost to its noresonant velue. These reductions occur as the inclusion
passes through the hot spots of the resonating sphere. Examination of Figs. 7 and 8 shows that
the position of the inclusion that causes the greatest change in scattering intensity differs slightly
between the resonant and nonresonant cases-this is because the distribution of energy density
within the sphere is radically different between the two cases. It is somewhat fortuitous that the
two positions are as close as they are.

At first, it was believed that an inclusion with a diameter as small as 64 nm could, if passing
through a hot spot, appreciably degrade the quality of the resonance; reducing the energy density
in the host to such a degree that the above decreases in scattered intensities could be observed.
A study of the resonance spectra of a glycerol droplet with such inclusions centered in a hot spot
reveals, however, that this is not the case: Fig. 9, wherein the size of the inclusion is given by
its radits, makes it clear that the resonance is not spoiled to a significant degrec by the presence
of either a 64 or 105 nm latex subsphere, but rather, the inclusion causes the resonance to be
redshifted. This is consistent with the phase-matching conditions that photons traversing an
'orbit' inside the host must meet in order for a resonance to be sustained. A blue shift of the
resonance is predicted if the optical density of the inclusion is less than that of the host. This is
borne out in the case of water inclusions, also depicted in Fig. 9.

An important point to make in regard to the calculations is that, even though the order-of-
scattering method is applicable to cases involving nonresonant hosts, it will break down if the host
is on resonance and the inclusion surpasses a critical size. In the present study, this critical size
was found to be at a diameter of slightly more than 64 nm. The solution for arbitrarily placed
inclusions involves simultaneously matching boundary conditions at all surfaces in the ensemable,
including, of course, that of the host. The system of equations layed out in Eqs. (19)-(22) can
be solved to yield the coefficients associated with the inclusions; these coefficients are then used
in Eqs. (23) and (24) to determine the scattering coefficients of the field exterior to the host.
This method of solution has been stable under all conditions encountered thus far. The spectra,
in Fig. 9, of the glycerol droplet with 30 nrm (radius) inclusions were found from thb, order-of-
scattering method, the calculations for the 50 and 100 mn inclusions were made with the use of a
biconjugate gradient linear equation solver.

Given the fact that intense fields can be generated in microdroplets, it is plausible that vapor
bubbles could be formed in regions of strong localized heating, especially when such regions are
colocated with a latex (or other) 'impurity.' It is therefore worth comparing the changes in
resonance spectra due to the presence of latex inclusions to those brought on by the presence of
small vapor bubbles. In Fig. 10, the effects of various sizes of air bubble on the TEL resonance of
glycerol is studied. Since the optical contrast of an air bubble is greater than that of one composed
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of water or latex, the spectra are seen to be more sensitive to the size of the air inclusions: The
resonance can be effe-Aively destroyed by a 100 nm bubble, whereas the resonance can be sustained
(albeit degraded) in the presence of water or latex inclusions of this same size, as was seen in Fig. 9.

Although the inclusions can clearly change the profile of an MDR, the experimental data indicate
that a symmetrical broadening of the resonance is occurring. The above calculations indicate,
however, that an inclusion centered in an MDR-induced hot spot can only produce an asymmetric
shift in the resonance. The effects of locating the inclusion off the center of the hot spot are
examined in Figs. 11 and 12. The heaviest solid curves in both figures correspond to the case of a
homogeneous sphere. The other solid curves are resonance spectra produced by inclusions located
at several radial positions that are slightly larger than that of the center of the hot spot. The
dotted curves are for inclusions located at several radial positions that are slightly smaller. In all
cases, the resonances are seen to be shifted to lower size parameters.

One last possible condition that might lead to symmetric broadening that was considered here
is that where the inclusion comes in contact with the surface of the host, although it had to be
assumed, for the sake of calculation, that such contact did not actually perturb that surface. Given
that, as seen in Fig. 8, the scattered intensity could be greatly effected in such cases, it seemed
possible that this case could lead to some kind of leakage of radiation that could produce a blue
shift in the resonances. As seen in Fig. 13, however, only shifts toward the red could be produced
under such conditions. (The dashed curve corresponds to the case of an inclusion slightly removed
from contact with the surface.)

Thus, no satisfactory explanation for symmetric broadening has been found. The only possibile
source of such broadening, assuming that it is real, unearthed in the present study is the production
of vapor bubbles in the seeded host. There is no direct evidence that this has occurred, though
the possibility may be worth pursuing.

IV. Effects of Scavenging on the Specific Absorption of Soot

Illustrative results for absorption by carbon spheres located in transparent hosts are displayed in
Figs. 14-17. The scattering geometry of the eccentric inclusion problem as posed in this section
is depicted in the insets of Figs. 14 and 15. All calculations presented henceforth are based on
the order-of-scattering method. The radii of the host and inclusion are, respectively, la and 2a.

It is popular (and, at times, useful) to define the efficiency factors for extinction, scattering and
absorption to be, in order,

Q IQ, and Q a (28)

where C is the geometric shadow of the particle and o denotes the respective cross sections. In
view of the more complex morphologies of sphere aggregates, however, a better choice for efficiency
factors is the gram-specific cross section, A, the units of which are M2/g:

A =a,=a 0(2

m (specific gravity)( particle volume) (29)
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The basic features of the dependence of A on orientation can be understood from geometric optics:
An optically large sphere with a refractive index of -, 1.5 will focus light into a region near its
surface. If the refractive index is ; 1.33 then light will be focused into a volume slightly less
than half a radius from the sphere surface. The refractive effects of the sphere will prevent most
of the incident radiation from reaching :.egions other than the focal volume in the 'shadowed'
hbemisphere. Reflections from the shadow surface of the sphere will produce a secondary focal
volume narrowly centered about the illuminated bidle of the droplet. Such features of a spherical
lense are manifested in the behavior of the absorption cross sections of the carbon grains as a
function of particle position in both Figs. 14 and 15. The larger the optical size of the host
particle, the more accurate the geometric optics picture. When carbon grains are found within
the focal volumes of the larger particles, their absorption cross sections can be enhanced by well
over an order of magnitude. Carbon spheres with radii of 0.01, 0.05, and 0.10yro have been
'-onsidered. In Figs. 14 and 15, A(a) is displayed for unpolarized light.

The refractive index of the host particles considered in Figs. 14 and 16 is taken to be 1.52 +-.
0.0i; appropriate for sulfuric acid droplets or ammonium sulfate particles at moderate relative
humidities. The absorption cross sections of carbon spheres entrained in other particles not only
depend on the orientation of the system relative to the incident beam, but on the polarization of
the beam, as well. This is primarily because the stucture of the electric fields in the host have a
strong polarization dependence. In fact, the smaller carbon grains can act as probes of the source
function, E.E', in the sphere. (The magnetic fields are not probed since the absorption arises only
from the coupling of the local electric field to current densities which are themselves proportional
to that field.) The larger the grain, the less sensitive its A to rapid variations in E . E'. This effect
of an increasing grain size is reminiscent of the convolution of a noisy ftuction with a Gaussian
profile of increasing width.

Similar results from calculations of the absorption cross sections of carbon particles contained in
cloud chdoplets are displayed in Figs. 15 and 17. There is a strong enhancement of A near a = 0,
as expected, and the caustic becomes evident in Fig. 15 as tb.e grain approaches the surface of the
droplet.

The lensing effect of the water droplets does not enhance the absorption cross sections to as great
of a degree as it does in the case of the smaller sulfate particles, primarily because the sulfates have
a higher refracti ee index a.nd hencc their focal volume is centered at or very near the surface. The
caustic more sharply defines a boundary between regions with high values of IEl12 and those where
JEl 2 ý- 0 for the optically large water droplets than for the smaller sulfate particles and hence
refractive shielding of carbon grains by cloud droplets is seen in Fig. 16 to be more pronounced
than is the shielding in haze elements.

In order to better understand the effects that scavenging of soot by transparent droplets may have
on the optical properties of haze and clouds, it is necessary to consider orientation averages of
cross sections. Orientation averages require a high resolution in a. (The calculhAticns sununarized
in Figs. 16 and 17 were based on a sampling frequency of 1.) It is here, perhaps, that the order-of-
scattering approach plays its most important role, flom a numerical standpoint, since the smaller
the adsorbed grain, the fewer terms are needed in the multiple scattering series from which the
scattering coefficients and cross sections are found. In fact, only one exchange between the 0.01jinm
carbon grains and droplets was necessary in order to determine a. to the required precision. For
larger grains, no more than five orders of scattcring were needed. For a given polarization, the
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orientation-averaged A is taken to be

(A) A(a) sin(a) da. (30)

Fig. 16 shows (A) of carbonaceous spheres at various displacements, d, from the center of a sulfate
host. Fig. 17 displays the dependence of (A) on d when the carbon is entrained in a cloud droplet.
Given that A = 3.7, 4.6, and 5.3 m2/g for, respectively, 2a= .01, .05, and .10 jim when the carbon

6" is isolated, scavenging is indicated to generally enhance absorption by soot. It is noteworthy,
however, that for cloud droplets, the concentric spheres model (J=0) commonly applied to this
problem tends to overestimate this enhancement. This is because the refractory properties of the
droplet can shield the inclusiors from sunlight to a degree that cannot be offset by the presence
of caustics.

V. Summary and Conclusions

The theory of light scattering by spherical hosts that entrain one or more spherical inclusions has
been presented and applied to calculations of the scattering properties and resonance spectra of
glycerol droplets seeded with latex inclusions and to a study of the aborption properties of soot
that is internally mixed in haze and clouds.

It has been demonstrated that a single inclusion, though very small compared to the host, can
create large (, 10%) fluctuations in the scattering of light from such particles. Such fluctuations
are consistent with experimental data, but it is not clear what the contribution of this process
might be relative to photon correlation effects. It is demonstrated that small particles may have
anamolously large effects when their center-to-center separation is less than the wavelength of
light in the inclusion, but without the occurrence of true aggregation. The effects of inclusions
can be much greater when the host is tuned to a morphology dependent resonance. The type
of broadening that seems to be discernable in experimental data has not yet been satisfactonly
explained by the calculations presented in this study.

The effects of scavenging of atmospheric carbon by haze and cloud droplets has been considered in
terms of the orientations of the resulting composite particles-carbon grains residing in droplets-
with respect to the incident fields. Orientation- and polarization-averaged absorption efficiencies
were then determined. Carbon scavenged into cloud droplets appears thus far to absorb signifi-
cantly more light when it is located near the center of the droplet than when it is found at other
locations, especially near the surface. If there is no preferred radial position for the carbon, then
the concentric sphere models overestimate (A). This overestimation should become even more
pronounced in cloud droplets if there is a tendency, owed perhaps to capillary or van der Waals
effects, for the soot to reside near the surface of the host.
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Figure 1. A wave front incident on a sphere (top) is decomposed into components of vector
spherical harmonics that are concentric with the sphere (bottom), i.e., the projections of
the incident field onto these basis functions serve as the coeffici,-nts for the expansion of the
incident wave in VSH.
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Figure 2. Transmitted and reflected nth partial waves arising from scattering by a layered

sphere. The complex amplitudes (I cn, 'd,) and ('an, 'b,) are those associated with, respec-

tively, reflection and transmission of the nth incoming VSH component of the plane wave at

a convex spherical surface. The coefficients ( 2 an, 2bn) likewise correspond to reflections from
the core. Transmission and reflection of these outgoing partial waves accross the concave outer

surface of the shell are represented, in order, by ( '6nd,,) and ( 2a,, 'bn,).
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Figure 3. Illustration of the multiple scattering calculation of the scattering coefficients of a
coated sphere. Shown are the first three TM contributions. Note that the incident field is
illustrated in its vector spherical harmonic representation.
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Figure 4. Scattering from an arbitrarily located spherical inclusion in an otherwise homoge-
neous spherical host. To find the coefficients of the partial fields scattered by the inclusion,
the projections onto the normal modes of the inclusion are found for incoming partial waves
concentric with the host. The sum of these projections is then multiplied by the Lorenz-Mie
coefficient (reflection coefficient) of the inclusion.
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Figure 5. Transmission and reflection, at the surface of the host, of the scattered field of anl
arbitrarily located spherical inclusion is determined from the projections of those scattered
fields onto the basis functions of the host as a product of the sum of those projections and the
concave Lorenz-Mie coefficients of the host.
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350- LATEX IN GLYCEROL DROPLET
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Figure 6. A sample of the experimental data collected by Dr. Ronald Pinnick and Dat Ngo.
Lorenz-Mie theory for and experimental measurements of light scattering by an evaporating
homogeneous glycerol droplet are compared with measurements made on glycerol hosts that
had been seeded with latex spheres of various size and concentration.
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Dependence of Intensity on d
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Figure 7. The dependence of scattered intensity, observed at 90' from the direction of inci-
dence, on the axial position c- two sizes of latex inclusions. The bo. .t' sphere is not on an
MDR.
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Figure 9. The •i'E•l resoanaice spectrum of a glycerol droplet for threv different sizes of latex
wnd water iriclu-sions. The inclusions are in the forward hut spot of the resonating droplet.
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Figure 10. The samne as Fig. 8, but for five sizes of air bubbles in the glycerol.
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Figure 11. Variations iii ;he resoinaaco spectriun of a. glycerol droplet as a latex inclusion
having a radius of 30nm is located at several positions near tihe center of tihe forward hot spot.
The heaviest solid line rep,'esents tihe spectrum of a homogeneous host.
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Figure 12. Same as Fig. 10, but for a latex i.nclusion having a radius of 50 nam.
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Figure 13. Variationls iin the resonance spectrtum of a glycerol droplet with a 50 nin latex
inclusion located near the forward surface of the droplet. (This is near the focal volume of

the host.)
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Figure 14. Orientation dependence of the gram-specific absorption cross sections of a carbon
grain located at various radial distances from the center of a sulfate host. The refractive index
of the sulfate and carbon particles is taken to be 1.52+0.Oi and 1.8+0.5i, respectively. In the
example shown, an a-verage over polarization has been taken.
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Figure 15. Same as Fig. 14, but with the carbon entrained in a cloud droplet of radius 5 pin.

The refractive index of water is taken here to be 1.33+0.0i.
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Figure 16. Orientation-averaged absorptio- cross sections for carbon spheres at different radial

distances from the center of sulfate haze elements.
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Figure 17. Same as Fig. 16, but for carbon grains entrained in cloud droplets.
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APPENDIX C

CONFERENCE AGENDA

EE TUESDAY, 22 JUNE

9:00 Registration

10:10 Opening: Dr. Edward W Stuebing, Team Leader, Aerosol Sciences and Technology,
Edgewood RDEC

Welcome: Mr. Joseph Vervier, Technical Director, Edgewood RDEC

Announcements: Mr. Elmer H. Engquist, Battelle Edgewood Operations

i. AEROSOL DYNAMICS

A. Particle Formation and Transport (Moderator: Janon Embury)

10:30 J.R. Brock and Kwang-ho Song (Univ. of Texas/Austin), Generation of Graphitic Carbon Fibers in
Corona Discharge

10:50 G. Chen ard R.K. Chang (Yale Univ.), Techniques to Measure the Evaporation Rate, Drai;, and Shape
Distortion of Droplets in a Segmented Stream

11•10 M.B. Ranade, J.W. Gevling and R.J. Han (Particle Technology, Inc.), Sorting of Fibers and Flakes by
Aspect Ratio Using Electrostatic Separation

11:30 AK. Ray (Univ. of Kentucky), Formation, Characterization and Behavior of Emulsion Droplets

11:50 LUNCH (Sign up for dinner at Josef's)

B. Particle Dissemination, Transport and Deposition (Moderator: Janon Embury)

1:1 5 E. Allison and B.R.F. Kendall (Penn State Univ.), Dynamics of Levitated Microparticles in a Gas Flow

1:35 J.R. Brock (Univ. of Texas/Austin), Stochastic Model for Windows in Dispersing Aerosol Plumes

1:55 M.B. Ranade, R.V. Calabrese (Particle Technology, Inc.) and M.H. Wang (Univ. of Maryland),
"S Aerodynamic Factors in Pneumatic Dispersion of Fine Powders

2:15 H. Littman, M.H. Morgan III, J. D. Paccione and S. DJ. Jovanovic (RPI), Modeling Dilute Phase Flow
in a Vertical Transport Pipe

2:35 BREAK (Sign up for dinner at Josef's)
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STUESDAY, 22 JUNE (cont.)

II. AEROSOL CHARACTERIZATION METHODS

A. Sampling, Nephelometry and Inversion (Moderator: Jerold Bottiger;

3:15 K. Leong, M. Jones and D. Holdridge (Argonne), Calibration and Performance of a Polar Nephelometer

3:35 M. Lax, W. Cai and X.S. Li (CCNY), Quasi-Binary Decision Making: A Speedup

3:55 M.S. Marshall and R.E. Benner (US Army DPG), Spherical and Nonspherical Aerosol and Particulate
Characterization Using Optical Pattern Recognition Techniques

4:15 G.A. Sehmel, R. Bonfante, D.R. Banks, E. Catalano and W.G. Rouse (PNL), Operation of the Breeze
Tunnel at Edgewood Area of Aberdeen Proving Ground to Determine Mass Extinction Coefficients

4:35 ADJOURN (Suggested restaurant for dinner: Josef's)

II ,, WEDNESDAY, 23 JUNE I

II. AEROSOL CHARACTERIZATION METHODS (cont.)

A. Sampling, Nephelometry and Inversion (Moderator: Jerold Bottiger)

8:30 E.S. Fry, G.G. Padmabandu, and C. Oh (TAMU), Angular Distribution of Electromagnetic Scattering
Near Zero Degrees

8:50 D. Magnus (KLD Labs, Inc.), PC-Based Hot-Wire Aerosol Sampling Technique

9:10 S. Zaromb, R. Torres, A. Birenzvige, and A. Akinyemi (Edgewood RDEC), Portable High-Throughput
Liquid Absorption Aerosol Sampler

9:30 BREAK - GROUP PHOTO

III. OVERVIEW & DISCUSSION 4

10:30 E.W. Stuebing (Edgewood RDEC), Directions for Future Research in the Edgewood RDEC Aerosol
Science Program

11:45 LUNCH

II. AEROSOL CHARACTERIZATION METHODS (cont.)

B. Spectroscopy of Single Particles and Aerosols (Moderator: Mike Smith)

1:15 J. Hodges (NIST), Elastic Light Scattering in a Gaussian Beam
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IF WEDNESDAY, 23 JUNE (cont.)

II. AEROSOL CHARACTERIZATION METHODS (cont.)

B. Spectroscopy of Single Particles and Aeroso!s (Moderator: Mike Smith)

1:35 M.M. Mazumder, S.C. Hill and R.K. Chang (Yale Univ.), Intensity-dependent Shifts of Cavity
Resonances: Effects on Nonlinear Processes in Droplets

1:55 M.D. Barnes, W.B. Whitten and J.M Ramsey (ORNL), QED -Enhanced Fluorescence Yields in Levitated
Microdroplets

IV. POSTER PROGRAM

2:15 POSTER PREVIEWS (Auditorium)

J.A. '•'.th, F. Ferguson, L. Lilleleht and J. Stephens (NASA - GSFC), Microgravity Nucleation and Particle
Coagulation Experiments on the KC-135 Aircraft

J.D. Pendleton (ARL/White Sands), Characterizing Layered Spheres with Particle Sizing Instruments

R.T. Wang (ISST - SAL), Obscuration and Scattering by Finite Cylinders - Microwave Experiment and
Theoretical Explanation

W.B. Whitten, M.J. Shapiro and J.M. Ramsey (ORNL), Multianalyte Immunoassay Based on Size Discrimination
of Microspheres

H-B. Lin, J.D. Eversole and A.J. Campillo (NRL), Correlation of Emission MDR Spectroscopy with Emission
Excitation Selection (Input Pump Resonance) in Microdroplets

D. Magnus (KLD Labs, Inc.), PC-Based Hot-Wire Aerosol Sampling Technique

A.E. Carver and J.P. Kahler (OptiMetrics, Inc.), Deriving the Mean 3-D Concentration Distribution of Initial Puffs
Produced by Graphite Fiber Sources Utilizing Video Imagery, Multipath Transmissometry, and the RADON
Transform

S. Arnold, L.M. Folan and A. Korn (Polytechnic Univ.), Optimal Long-term Imaging of a Charged Aerosol
Particle at the Center of an Electrodynamic Levitator - Trap

r S. Zaromb, R. Torres, A. Birenzvige, and A. AKinyemi (Edgewood RDECI, Portable High-Throughput Liquid
Absorption Aerosol Sampler

N.M. Witriol (LA Tech Univ.), D.K. Cohoon (Temple Univ./NRC Fellow Assoc. @ Edgewood RDEC), 0.1. Sindoni
(Edgewood RDEC), A More Realistic Determination of Layered Aerosol Particle Properties from Scattering Data;
Noise Introduction

D.K. Cohoon (Temple Univ./NRC Fellow Assoc. @ Edgewood RDEC), An Exact Analytical Solution of a Model
of Explosive Dispersal of an Electromagnetic Wave Obscurant in a Steady Wind Assuming Constant Settling
Velocity, Transverse and Vertical Eddy Current Diffusivity and Rate Constant for Species Removal

3:00 POSTER SESSION (Seminar Area)

5:00 ADJOURN
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LTHURSDAY, 24 JUNE

II. AEROSOL CHARACTERIZATION METHODS (cont.)

B. Spectroscopy Of Single Particles and Aerosols (Moderator: Burt Bronk)

8:30 J.D. Eversole, H-B Lin, A.L. Huston, A.J. Campillo (NRL) and H.M. Lai, P.T. Leung, S.Y. Liu, K. Young
(Chinese University of Hong Kong), High Resolution Spectroscopy and Precise Identification of
Morphology Dependent Resonances in Microdroplets

8:50 A.J. Campillo and H-B. Lin (NRL), CW Stimulated Rayleigh-Wing Scattering and Four-Wave Parametric
Oscillation in Carbon Disulfide Microdroplets

V
9:10 S. Arnold, N.B. Hessel (Polytechnic Univ.), Photoemission from Single Particles in an Electrodynamic

Levitator - Trap

9:30 L. Reinisch (Vanderbilt Univ. Medical Center), M. Smith and B.V. Bronk (Edgewood RDEC),

Fluorescence Methods Applied to Aerosols

9:50 BREAK

10:30 M.N. Lee (Univ. of Georgia), Incoherent Scattering of Semiclassical Particles and the Relaxation
Function

V. OPTICAL PROPERTIES OF AEROSOLS

Moderator: Orazio I. Sindoni

10:50 J.R. Brock and Moon-kyu Chei (Univ. of Texas/Austin), Finite Element Calculation of Absorption and
Scattering of Electromagnetic Radiation by Coated Spheres

11:10 D. Rosen (BED/ARL), Remote Biological Sensing by Circular Polarization Transmissometry

11:30 D. Rosen and J.D. Pendleton (BED/ARL), Passive Romote Sensing of Microorganisms Using Optical
Activity and Sunlight

11:50 LUNCH

1:15 K. Fuller (Colorado State Univ.), Light Scattering by Spheres Containing Multiple Spherical
Inhomogeneities

1:35 B.J. Stoyanov and R.A. Farrell (The Johns Hopkins Univ. APL), Creeping Waves: A Missing Ingredient
in Variational Trial Fields *

1:55 R.T. Wang (ISST - SAL), Application of the Exact Solution for Infinite Cylinder Scattering to Finite
Cylinder Problpms

2:15 D. Haracz, A. Cohen, L. Cohen (Drexel Univ.), Angular Scattering Curves for Rain Droplet Shaped
Nonspherical Particles

2:35 ADJOURN
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